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Abstract. This short note gives a mending to a little but sensitive flaw in the

original proof of an important and useful inequality established by Leinder.

In 1970, Leindler [3] generalized some important inequalities of Hardy and

Littlewood, among those the following two are the most useful (for convenience we

only mention the standard version here):

Theorem. ([3]) Let p > 1, αn > 0, then for all λn > 0 it holds that
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These two inequalities indeed have many important and useful applications,

especially in Lp integrability of trigonometric series (cf. references [2, 4, 5], for

example). Generalizations of these inequalities could be found in the work [6].
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Recently, we found that, for p > 1, in the original proof of inequality (1) there

is some little but sensitive flaw and it really needs to be mended. Actually, in the

original proof, suppose first that the right side of the second inequality in (1) is

finite, then in the following inequality ([3, page 282, line -4])
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and in the following texts, the assumption that
∑

∞
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∗

n)
p < ∞ is already

automatically applied.

In this short note, we will prove a lemma to solve the confusion, and all the

other procedures in the original proof can be kept unchanged.

Lemma. Let p > 1, αn > 0, λn > 0, n = 1, 2, . . ., and Λn, A∗

n be defined as in (2)

and (3). If
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Proof. Suppose, to the contrary, that
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Applying Hölder’s inequality, one gets
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We already know that, for any given σ > 0, the series
∑
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(this fact is already mentioned in Hardy–Littlewood–Pólya [1, Theorem 162]) and
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Indeed, in view of
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, where Λn−1 < Λ̄n < Λn,

we can immediately deduce (6).
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Now we check by (5) and (6) that
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where M(p) is a positive constant only depending upon p. From this point, applying

Abel’s transformation and Hölder’s inequality, we have, under the assumption (4),

that
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or in other words, it follows that
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holds for any sufficiently large k, thus obtain a contradiction to (4).
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