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Contractions T for which A is a projection
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Abstract. If T is a Hilbert space contraction, then T
∗n

T
n s

→A, where A is

a nonnegative contraction. The strong limit A is a projection if and only

T = G⊕ V , where G is a strongly stable contraction and V is an isometry.

This article is an expository paper on the class of contractions T for which A

is a projection. After surveying such a class, it is shown that it is quite a large

class. Indeed, it includes (i) all contractions whose adjoint has property PF,

and also (ii) all contractions whose intersection of the continuous spectrum of

its completely nonunitary direct summand with the unit circle has Lebesgue

measure zero. Some new questions are investigated as well. For instance, is

A a projection for every biquasitriangular contraction T? If so, then every

contraction not in class C00 has a nontrivial invariant subspace.

1 Introduction

Throughout this paper H will stand for a complex Hilbert space. By an operator

on H we mean a bounded linear transformation of H into itself. Let N (T ) denote

the kernel of an operator T (i.e., N (T ) = T−1({0}) = {x ∈ H : Tx = 0}), which

is a subspace (i.e., a closed linear manifold) of H, and let R(T ) denote the range

of T (i.e., R(T ) = T (H)), which is a linear manifold of H. A contraction is an

operator T such that ‖T‖ ≤ 1 (i.e., such that ‖Tx‖ ≤ ‖x‖ for every x in H). Let

T ∗ denote the adjoint of T , and let I be the identity operator. An isometry is a

contraction V such that V ∗V = I (i.e., an operator V such that ‖V x‖ = ‖x‖ for

every x in H), and a coisometry is a contraction whose adjoint is an isometry. An

operator U is unitary if it is both an isometry and a coisometry (equivalently, if it
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is a normal isometry, or a surjective isometry, or still an invertible isometry). If T

is a contraction, then {T ∗nTn}n≥0 is a bounded monotone sequence of self-adjoint

operators (a nonincreasing sequence of nonnegative contractions, actually) so that

T ∗nTn s−→ A;

that is, {T ∗nTn}n≥0 converges strongly to an operator A. Basic properties of the

strong limit A have been extensively investigated in the current literature (see e.g.,

[55, p. 38], [8,12,33,34,36,41], [28, Chapter 3], and [29, Chapter 6]. In particular, for

every contraction T , the strong limit A of {T ∗nTn}n≥0 is a nonnegative contraction,

which is nonstrict whenever it is not null; that is,

O ≤ A ≤ I and ‖A‖ = 1 whenever A 6= O

(where O stands for the null operator). Quite recently, a complete characterization

of nonnegative contractions A that are strong limits of {T ∗nTn}n≥0 was considered

in [13]. The above are properties shared by (orthogonal) projections but A is not

necessarily a projection (it is not necessarily idempotent).

Example 1. The unilateral weighted shift T= shift{(k+1)1/2(k+2)−1(k+3)1/2}k≥0

on ℓ2+ is a nonstrict proper contraction for which A = diag{(k + 1)(k + 2)−1}k≥0 is

a completely nonprojective diagonal (cf. [34] or [28, pp. 51, 52]). In other words,

‖T‖ = 1 and ‖Tx‖ < ‖x‖ for every nonzero x in ℓ2+ (i.e., T is a nonstrict proper con-

traction) because the weight sequence {wk}k≥0 = {(k+1)1/2(k+2)−1(k+3)1/2}k≥0

is increasing in [
√

3/4, 1) and converges to 1; and Ax 6= A2x for every nonzero x in

ℓ2+ (i.e., A is completely nonprojective).

In fact, A is a projection if and only if it commutes with T (cf. [8]; also see [34]):

A = A2 if and only if AT = TA.

Since T ∗ is a contraction whenever T is, the sequence {TnT ∗n}n≥0 converges

strongly too. Let A∗ be its strong limit,

TnT ∗n s−→ A∗,

which, of course, share the same properties of A (by replacing T with T ∗).

The present article consists of a research-expository paper on the class of

contractions T for which A is a projection. A brief survey on this class is followed

by an analysis on the role it plays towards well-known invariant subspace problems.

Such a class is fully characterized in Theorem 1 (Section 2) and, in light of this

characterization, we call those contractions asymptotically partially isometric. Two
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fundamental results which are enough to unfold many subclasses of it (e.g., cohy-

ponormal, compact, and algebraic contractions) are isolated in Propositions 1 and 2

(Section 3). We link this class with classical open questions on invariant subspaces

(Section 4). For example, are biquasitriangular contractions asymptotically par-

tially isometric? If so, then a contraction not in class C00 has a nontrivial invariant

subspace, as shown in Theorem 2. The hyponormal counterpart is investigated in

Theorem 3.

2 Asymptotically partially isometric contractions

An operator T on a complex Hilbert space H is weakly, strongly, or uniformly

stable (notation: Tn w−→ O, Tn s−→ O, or Tn u−→ O) if the power sequence {Tn}n≥0

converges weakly, strongly, or uniformly to the null operator (i.e., if 〈Tnx ;x〉 → 0

for every x in H, ‖Tnx‖ → 0 for every x in H, or ‖Tn‖ → 0), respectively. Thus

a strongly stable contraction is precisely a contraction of class C0· and, dually, a

contraction whose adjoint is strongly stable is precisely a contraction of class C·0,
so that a contraction T is of class C00 if and only if both T and T ∗ are strongly

stable (see [55, p. 76]). Since

‖Tnx‖ → ‖A 1
2x‖ for every x ∈ H,

it follows that a contraction T is strongly stable if and only if A = O; that is,

Tn s−→ O if and only if A = O.

On the other hand, a contraction T is an isometry if and only if A = I; that is,

T ∗T = I if and only if A = I,

which is readily verified. Actually, for every nonnegative integer n,

T ∗nATn = A so that ‖A 1
2Tnx‖ = ‖A 1

2x‖ for every x ∈ H.

Thus strongly stable contractions and isometries are classes of contractions T for

which A is a trivial projection. Therefore, since an operator is a backward unilateral

shift (of any multiplicity) if and only if it is a strongly stable coisometry — see e.g.,

[28, p. 88], it follows that a contraction

T is a unilateral shift if and only if A = I and A∗= O.

Moreover, although the assertion

A = A∗ implies A = A2 and A∗= A2
∗



Acta Scientiarum Mathematicarum 80:3–4 (2014) c© Bolyai Institute, University of Szeged

606 C. S. Kubrusly

holds (cf. [34] or [28, p. 53]), the unilateral shift shows that the converse fails.

Let M be a subspace (i.e., a closed linear manifold) of H. If T is an operator

on H, then T |M is the restriction of T to M. Recall that H admits the orthogonal

decomposition H = M⊕M⊥, where M⊥ = H⊖M is the orthogonal complement

of M in H. Let V be an isometry on M⊥. It is clear that the direct (orthogonal) sum

O ⊕ V on H = M⊕M⊥ is a partial isometry (a contraction that acts isometrically

on the orthogonal complement of its kernel). In fact, this is the simplest nontrivial

instance of a power partial isometry (a partial isometry for which all its powers are

again partial isometries). It was proved in [19] that every power partial isometry is

a direct sum of a truncated unilateral shift, a unilateral shift, a backward unilateral

shift, and a unitary operator (where, of course, it is understood that not all four

direct summands need to be present in every case). Note that the converse holds

trivially because each possible direct summand is a power partial isometry. Since

truncated shifts are nilpotent, it follows at once that every power partial isometry

is a contraction for which A = A2 and A∗= A2
∗. (Indeed, A = O ⊕ I ⊕O ⊕ I and

A∗= O ⊕O ⊕ I ⊕ I if all four direct summands are present.) The above italicized

result from [19] can be thought of as a special case of Theorem 1(b) below, where

the nilpotent direct summand is extended to a contraction of class C00.

Let T be a contraction on H. If there exists a subspace M of H for which

T = G⊕ V

on H = M⊕M⊥, where G is a strongly stable contraction on M, and V is

an isometry on M⊥, then we say that T is an asymptotically partially isometric

contraction. This means that the power sequence {Tn}n≥0 approaches the sequence

of power partial isometries {O ⊕ V n}n≥0 in the strong operator topology;

Tn − (O ⊕ V n) s−→ O.

The forthcoming Theorem 1(a) says that a contraction T is asymptotically partially

isometric if and only if A is a projection. We borrow Theorem 1 from [34] (part

of it appeared in [8]; also see [28, p. 83]). First recall the von Neumann–Wold

decomposition for isometries (e.g., [55, p. 3] or [28, p. 81]): If T is an isometry on

H, then

T = S+ ⊕ U,

where S+= T |N (I−A∗)⊥ is a unilateral shift and U= T |N (I−A∗) is unitary. This can

be viewed as a special case of the Nagy–Foiaş–Langer decomposition for contractions

[53], [35] (also see [55, p. 8] or [28, p. 76]): If T is a contraction on H, then

T = C ⊕ U,
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where C = T |U⊥ is a completely nonunitary contraction and U = T |U is unitary

on U = N (I −A) ∩N (I −A∗). These decompositions are unique, and a contrac-

tion is completely nonunitary (cnu) if it has no nonzero unitary direct summand;

equivalently, if the restriction of it to any nonzero reducing subspace is not unitary.

The cnu direct summand C is referred to as the cnu part of T, and the unitary U

as the unitary part of T. (Contractions of class C0· or C·0, and so of class C00, are

cnu-unilateral shifts S+ and backward unilateral shifts S− are cnu contractions.)

Theorem 1. Let T be a contraction on a Hilbert space. Then

A = A2 if and only if T = G⊕ S+ ⊕ U, ((a))

where G is a C0·-contraction (i.e., strongly stable) on N (A), S+ is a unilateral shift

on N (I −A) ∩N (A∗), and U is a unitary operator on N (I −A) ∩N (I −A∗);

A = A2 and A∗ = A2
∗ if and only if T = B ⊕ S− ⊕ S+ ⊕ U, ((b))

where B is a C00-contraction on N (A) ∩ N (A∗) and S− is a backward unilateral

shift (i.e., the adjoint of a unilateral shift) on N (A) ∩N (I −A∗); and

A = A∗ if and only if T = B ⊕ U. ((c))

Sketchy proof. (a) If A = A2, then H = N (A−A2). However, it can be verified

that N (A−A2) = N (A)⊕N (I −A), where N (A) and N (I −A) are orthogonal,

complementary in N (A−A2), and T -invariant subspaces. Therefore,

T = G⊕ V,

where G = T |N (A) is a strongly stable contraction on N (A) and V = T |N (I−A) is

an isometry on N (I −A). Using the von Neumann–Wold decomposition for V ,

T = G⊕ S+ ⊕ U,

where S+ = V |M is a unilateral shift on M and U = V |U is unitary on U , M and U
being orthogonal complementary subspaces of N (I −A), so that G⊕ S+ is comple-

tely nonunitary. By the Nagy–Foiaş–Langer decomposition it can be shown that

U = N (I −A) ∩N (I −A∗) and M = N (I −A) ∩N (A∗).

Conversely, T = G⊕ S+ ⊕ U implies A = O ⊕ I ⊕ I.

(b) Since G is a contraction on N (A), let the operator A′
∗ on N (A) be the

strong limit of {GnG∗n}. It can be verified that

N (A) ∩N (A∗) = N (A′
∗) and N (A) ∩N (I −A∗) = N (I −A′

∗).
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If, in addition to A = A2, A∗ = A2
∗ , then A′

∗ = A′ 2
∗ , and hence G∗ admits a decom-

position as in (a), so that G = B ⊕ S−, and therefore

T = B ⊕ S− ⊕ S+ ⊕ U,

with B=G|N (A′
∗
)= T |N (A)∩N (A∗), a strongly stable contraction on N (A) ∩N (A∗)

whose adjoint B∗ also is strongly stable, and S−=G|N (I−A′
∗
)= T |N (A)∩N (I−A∗) is a

strongly stable (so completely nonunitary) contraction on N (A) ∩N (I−A∗) whose

adjoint is a (completely nonunitary) isometry, so that it is a backward unilateral

shift. Conversely, if T = B ⊕ S− ⊕ S+ ⊕ U, then A = A2 and A∗ = A2
∗ .

(c) If A = A∗, then A = A2 and A∗ = A2
∗ [34], so that T and T ∗ can be

decomposed as in (b). Thus, using the decomposition in (b) for T and T ∗, it can be

shown that

T = B ⊕ U,

on H = N (A)⊕N (I −A), with B = T |N (A) and U = T |N (I−A), where B is a

C00-contraction on N (A) and U is unitary on N (I −A). Conversely, if T = B ⊕ U,

then A = A∗ = O ⊕ I. (For the detailed proof see [29, p. 60–62].)

It is understood that any of the above direct summands may be missing and,

if both summands S− and S+ are present, they may have distinct (finite or infinite)

multiplicities. According to the Nagy–Foiaş–Langer decomposition for a contraction

T = C ⊕ U , Theorem 1(a) says that C is of class C0· (i.e., C is strongly stable) if

and only if A = A2 and the direct summand S+ is missing in (a), and Theorem 1(c)

says that C is of class C00 if and only if A = A∗.

3 Two large classes of asymptotically partially isometric

contractions

Asymptotically partially isometric contractions are precisely those contractions T

for which A is a projection (Theorem 1(a)). Next we isolate two fundamental results

(Propositions 1 and 2 below) which ensure that such a class is quite large.

Consider the following definition from [9] (see also [58] and [31]). A contraction

T has property PF (a short for Putnam–Fuglede) if either T ∗ is not intertwined

to any isometry or, if T ∗ is intertwined to some isometry V, then the same trans-

formation that intertwines T ∗ to V also intertwines T to the coisometry V ∗. In

other words, let K be any nonzero complex Hilbert space, and let X : H → K be an

arbitrary nonzero bounded linear transformation of H into K. A contraction T on

H has property PF if, whenever the equation XT ∗ = VX holds for some isometry
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V on K, then XT = V ∗X. Here are two well-known basic facts on contractions with

property PF (rather elementary proofs of these results appeared in [31]).

Every isometry has property PF.

If a coisometry has property PF, then it is unitary .

It is worth remarking that, although property PF for contractions as posed above

was introduced in [9], the problem of generalizing (in many directions) the classical

Fuglede–Putnam Theorem (namely, if a bounded linear transformation intertwines

a couple of normal operators, then it also intertwines their adjoints) has been con-

sidered by a large number of authors since [52] — for a review on the pertinent

literature the reader is referred to [7]. The proof of the next proposition was bor-

rowed from [31]; a different one can be found in [58]. The proposition says that

if a contraction T has property PF, then A∗ is a projection; equivalently, T is

asymptotically partially isometric whenever T ∗ is a contraction with property PF.

Proposition 1. If a contraction T has property PF, then A∗ = A2
∗. Equivalently, if

a contraction T is such that T ∗ has property PF, then A = A2.

Proof. Take the nonnegative A and an arbitrary integer n ≥ 0. It can be shown

that [28, Section 3.2] there is an isometry V on R(A)− such that A
1
2T = V A

1
2 .

Hence

A
1
2Tn = V nA

1
2 .

If T ∗ has property PF, then A
1
2T ∗ = V ∗A

1
2 so that A

1
2T ∗n = V ∗nA

1
2 . Thus

A
1
2V n = TnA

1
2

because A
1
2 is self-adjoint. But A = T ∗nATn so that

A = T ∗nA
1
2A

1
2Tn = T ∗nA

1
2V nA

1
2 = T ∗nTnA

1
2A

1
2 ,

and therefore A = A2 (since T ∗nTn s−→ A).

The class of contractions that have property PF is large. Recall: an operator

T is hyponormal, paranormal, or dominant if O ≤ T ∗T − T T ∗, ‖Tx‖2 ≤ ‖T 2x‖‖x‖
for every x in H, or R(λI − T ) ⊆ R(λI − T ∗) for every λ ∈ C, respectively, and

cohyponormal if its adjoint is hyponormal. These classes are related as follows:

Every hyponormal operator is dominant and paranormal.

Indeed, dominant contractions and paranormal contractions have property PF (see

e.g., [9], [58], and the references therein):

If a contraction is dominant or paranormal, then it has property PF.
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Thus hyponormal (in particular, normal) contractions have property PF. Therefore,

by Proposition 1, dominant and paranormal contractions T are such that A∗ = A2
∗ :

If a contraction T is dominant or paranormal, then A∗ = A2
∗ .

If T is a cohyponormal contraction, then A = A2.

Recalling that T is normal if and only if it is hyponormal and cohyponormal (i.e., if

T commutes with T ∗), the above implication ensures that A = A2 and A∗= A2
∗ if

T is normal. Actually, if T is a normal contraction, then T ∗nTn = TnT ∗n for every

integer n ≥ 0 so that A = A∗ trivially, which implies that A = A2 and A∗= A2
∗:

If T is a normal contraction, then A = A∗, and hence A = A2 and A∗= A2
∗.

The preceding observation plus Theorem 1(c) lead to the following result.

If T is a normal contraction, then T = B ⊕ U , where B is a normal

C00-contraction on N (A) and U is a unitary operator on N (I −A).

The converse of Proposition 1 fails; even a stronger version fails. For instance, if T

is a backward unilateral shift (i.e., T = S+

∗ and T ∗ = S+), then A = O and A∗ = I

but T does not have property PF (it is a nonunitary coisometry):

A contraction T with A = A2 and A∗= A2
∗ may not have property PF.

Consider the Sz. Nagy–Foiaş–Langer decomposition T = C ⊕ U of a contraction T.

In fact, it was proved in [9] that a contraction T has property PF if and only if its

completely nonunitary direct summand is of class C·0. That is,

T = C ⊕ U is a contraction with property PF if and only if C is of class C·0

(see also [31]). Thus (Theorem 1(c)) contractions T and T ∗ have property PF if

and only if their completely nonunitary direct summands are of class C00; that is,

T and T ∗ have property PF if and only if A = A∗.

Perhaps a systematic investigation on asymptotically partially isometric con-

tractions has been initiated after Putnam’s paper [44]. It contains the first proof

that a completely nonunitary cohyponormal contraction is strongly stable and, con-

sequently, that if T ∗ is a hyponormal contraction, then T = G⊕ U , where G is a

strongly stable contraction and U is unitary, so that A = A2. Simplified different

proofs followed in [38] (see also [57, pp. 113–116]) and in [33] (see also [28, pp. 77–79])

by using a reverse approach. They first verified that A = A2 if T is a cohyponor-

mal contraction and then concluded that a completely nonunitary cohyponormal
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contraction is strongly stable (thus stressing the role played by contractions for

which A is a projection). This was extended to paranormal contractions in [38], and

to dominant contractions in [14] and [56], which are classes of contractions that

include the hyponormal contractions. Summing up:

If a contraction T = C ⊕ U is dominant or paranormal, then C ∈ C·0.
If T = C ⊕ U is a cohyponormal contraction, then C ∈ C0·.

Extentions to k-paranormal contractions (which include the paranormal) and to

k-quasihyponormal contractions (which include the hyponormal) have been dis-

cussed in the literature. An operator T is k-paranormal if ‖Tx‖k+1 ≤ ‖T k+1x‖‖x‖k
for some integer k ≥ 1 and every x ∈ H (a paranormal is simply a 1-paranormal

operator), and an operator T is k-quasihyponormal if O ≤ T ∗k(T ∗T − T T ∗)T k for

some integer k ≥ 0 (a hyponormal is simply a 0-quasihyponormal operator — if

k = 1, then T is called quasihyponormal). The following result is from [11].

If a contraction T = C ⊕U is k-paranormal or k-quasihyponormal, then C ∈ C·0 .

More extensions along these lines (i.e., for classes of contractions that include the

hyponormal) can be found in [10] and [39]. Extensions along different lines have

also been discussed in the literature. For instance, extension to bicontractions (i.e.,

to a pair of commuting contractions) was considered in [26], and extension to A′-

contractions in [49, 50]. That is, extension to operators T for which there is a

positive A′ such that T ∗A′T ≤ A′. If the equality holds, then T is said to be an

A′-isometry. (In particular, if T is a contraction, then it is an A-isometry and also

an I-contraction). Further extensions to noncontractions have been investigated in

[51] by considering the asymptotic limit of T which generalizes the strong limit A, as

defined in [21,22] for power bounded operators T, or in [23,24] for operators whose

power sequence satisfies some regularity condition weaker than power boundedness.

Another approach to asymptotically partially isometric contractions evolving

in a different direction and including classes of contractions not related to the above

examples will be proved next. Let σ(T ) denote the spectrum of an operator T and

consider its classical partition σ(T ) = σP (T ) ∪ σR(T ) ∪ σC(T ), where σP (T ) is the

point spectrum (i.e., the set of all eigenvalues of T ), σR(T ) = σP (T
∗)∗\σP (T ) is the

residual spectrum, and σC(T ) = σ(T )\(σP (T ) ∪ σR(T )) is the continuous spectrum.

Let µ denote the Lebesgue measure on the unit circle ∂D (where D denotes the

open unit disc in C). Consider again the Nagy–Foiaş–Langer decomposition.

Proposition 2. If a contraction T = C ⊕ U is such that µ(σC(C) ∩ ∂D) = 0, then

A = A∗. Equivalently, µ(σC(C) ∩ ∂D) = 0 implies that T and T ∗ have property PF,

which in turn implies that A = A2 and A∗= A2
∗.
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Proof. Let T = C ⊕ U be a contraction, where C is a completely nonunitary con-

traction and U is unitary (as always, any of the above direct summands may be

missing). If C is missing then T = U, and A = A∗ trivially, since U is normal. Thus

suppose C is not missing. Recall: every completely nonunitary contraction is weakly

stable [15, p. 55], and a weakly stable contraction C is such that σP (C) ∪ σR(C) is

included in the open unit disc [29, p. 80]. That is (also see [28, pp. 106,114]),

C is cnu implies Cn w−→ O which implies σP (C) ∪ σR(C) ⊆ D.

Hence

µ(σC(C) ∩ ∂D) = 0 implies µ(σ(C) ∩ ∂D) = 0.

Since C is a cnu contraction, it follows that

µ(σ(C) ∩ ∂D) = 0 implies C ∈ C00

(see [55, p. 90], which originated from [54, p. 127]). This means that C and C∗

are strongly stable (i.e., T = B ⊕ U), and therefore A = A∗= O ⊕ I according to

Theorem 1(c). The rest of the statement follows at once by Proposition 1.

If T is a compact contraction, then A = A∗, and hence A = A2 and A∗= A2
∗.

Indeed, compact (countable spectrum) and algebraic (finite spectrum) contractions

are asymptotically partially isometric by Proposition 2 (and T is compact or alge-

braic if and only if T ∗ is). Quasinilpotent (one-point spectrum) contractions are

also included, but these are trivially asymptotically partially isometric; they lie in

C00. Another particular case of Proposition 2 reads as follows.

If T = C ⊕ U and σC(C) ∩ ∂D = ∅, then C ∈ C00, and so A = A∗.

Such a particular case can be readily verified without the help of the measure

theoretical result from [55, p. 90]. Actually, the previous argument ensures that if

σC(C) ∩ ∂D = ∅, then σ(C) ⊂ D, and so r(C) < 1, which means that Cn u−→ O.

(r( · ) denotes spectral radius; for further equivalent conditions to uniform stability

see, e.g., [28, p. 11].) Hence Cn s−→ O and C∗n s−→ O; that is, C ∈ C00.

4 Biquasitriangular contractions

Are they asymptotically partially isometric? Before defining biquasitriangular op-

erators and considering this question we need a finer analysis of the spectrum. Let
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B[H] denotes the algebra of all operators on H. Set Fℓ = {T ∈ B[H] : R(T ) is

closed and dimN (T )<∞}, Fr = {T ∈ B[H] : R(T ) is closed and dimN (T ∗)<∞},
F = Fℓ ∩ Fr, and W = {T ∈ F : dimN (T ) = dimN (T ∗)}. These are the classes of

left semi-Fredholm, right semi-Fredholm, Fredholm, and Weyl operators, respectively.

Let σℓe(T ) = {λ ∈ C : λI − T ∈ B[H]\Fℓ}, σre(T ) = {λ ∈ C : λI − T ∈ B[H]\Fr},
σe(T ) = {λ ∈ C : λI − T ∈ B[H]\F}, and σw(T ) = {λ ∈ C : λI − T ∈ B[H]\W} be

the left essential spectrum, the right essential spectrum, the essential spectrum,

and the Weyl spectrum of an arbitrary operator T ∈ B[H], respectively. Recall that

σℓe(T ) ∪ σre(T ) = σe(T ) ⊆ σw(T ) ⊆ σ(T ), that σℓe(T ) = σre(T ) = σe(T ) = σw(T )

if and only if σe(T ) has no holes (of nonzero index) and no pseudoholes, and set

σ0(T ) = σ(T )\σw(T ) (see, e.g., [30, pp. 131–162]).

From now on let H be a complex infinite-dimensional separable Hilbert space.

An operator T ∈ B[H] is quasitriangular (or quasidiagonal) if there is a sequence

{Pn} of finite-rank projections in B[H] that converges strongly to the identity

operator and {(I − Pn)TPn} (or {TPn − PnT}) converges uniformly to the null

operator [16]. It is plain that T is quasidiagonal if and only if T ∗ is (since orthogonal

projections are self-adjoint). An operator T is biquasitriangular if both T and T ∗ are

quasitriangular. For a collection of results on quasitriangular and biquasitriangular

operators see, for instance, [40, pp. 25–30] and [20, pp. 163–192]. In particular

[40, p. 37],

T ∈ B[H] is biquasitriangular if and only if σℓe(T ) = σre(T ) = σe(T ) = σw(T ).

Since every operator on H with a countable spectrum is quasitriangular (see,

e.g., [40, p,29]), it follows that the samples of contractions for Proposition 2 (compact,

algebraic and quasinilpotent) are all biquasitriangular (since adjoint of compact,

algebraic and quasinilpotent are again compact, algebraic and quasinilpotent).

‘One of the most important, most difficult, and most exasperating unsolved

problems of operator theory is the problem of invariant subspaces. The question is

simple to state: does every operator on an infinite-dimensional [separable, complex]

Hilbert space have a non-trivial invariant subspace? “Non-trivial” means different

from both 0 and the whole space, “invariant” means that the operator maps it to

itself ’ [18, p. 100]. An operator that has a nontrivial invariant subspace is called

intransitive, otherwise it is called transitive. Let “nis” mean “nontrivial invariant

subspace”.

The Riesz Decomposition Theorem (see, e.g., [45, p. 32]) ensures that if the

spectrum σ(T ) of an operator T is disconnected then it has a nis:

If there is an operator T ∈ B[H] without a nis, then σ(T ) is connected.
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(In this case, the nonempty compact σ(T ) has no isolated point — a bounded perfect

set.) Recall that N (λI − T ) and R(λI − T )− are T -invariant subspaces for every λ

in C. Consider the classical partition of the spectrum. Since {0} 6= N (λI − T ) for

every λ ∈ σP (T ), and since T has a nis if and only if T ∗ has a nis, we may infer:

If there is an operator T ∈ B[H] without a nis, then σ(T ) = σC(T ).

Also recall that σC(T ) ⊆ σℓe(T ) ∩ σre(T ) (see e.g., [30, p. 146]). Thus σ(T ) = σC(T )

implies σ(T ) = σℓe(T ) ∩ σre(T ). Note that, if λ 6∈ σℓe(T ) (i.e., if (λI − T ) ∈ Fℓ),

then R(λI − T ) is closed and dimN (λI − T ) < ∞. If R(λI − T ) 6= H, then it is a

nis for T. If N (λI − T ) 6= {0}, then it is a nis for T (λ is an eigenvalue of T ). If

R(λI − T ) = H and N (λI − T ) = {0}, then λI − T is invertible, which means that

λ 6∈ σ(T ). Outcome: if λ ∈ σ(T )\σℓe(T ), then T has a nis. Since M is a nis for T

if and only if M⊥ is nis for T ∗, it also follows that if λ ∈ σ(T )\σre(T ), then T has

a nis. Thus, since σe(T ) = σℓe(T ) ∪ σre(T ), we may claim:

If there exists T ∈ B[H] without a nis, then σℓe(T ) = σre(T ) = σe(T ) = σ(T ).

The previous spectral equivalent definition of biquasitriangular operators en-

sures that, if there is a T ∈ B[H] with no nis, then it is biquasitriangular (since

σe(T ) ⊆ σw(T ) ⊆ σ(T )), and σ0(T ) = σ(T )\σw(T ) = ∅. In fact, recalling that

σ0(T ) consists of eigenvalues only (see, e.g., [30, p. 151]), it is already empty if T

has no nis. Hence we get the following result.

If there exists T ∈ B[H] with no nis, then it is biquasitriangular.

Equivalently, if T ∈ B[H] is not biquasitriangular, then it has a nis. The closure

(in B[H]) of the set of all nilpotent operators coincides with the set of all biquasi-

triangular operators T for which σe(T ) and σ(T ) are both connected and 0 ∈ σe(T )

(see, e.g., [40, p. 40]). If T has no nis, then it is biquasitriangular, σe(T ) = σw(T ) =

σ(T ) is connected, and either 0 ∈ σw(T ) or 0 6∈ σ(T ) (since σ0(T ) ⊆ σP (T ) and, if

T has no nis, then σP (T ) = ∅). However, by replacing T with λI − T if necessary

(which share the same lattice of invariant subspaces, and are such that σ(λI − T ) =

λ− σ(T )), it follows that there is no loss of generality in assuming that 0 ∈ σ(T ),

so that 0 ∈ σw(T ). Thus the previous implication can be tightened as follows.

If there exists T ∈ B[H] with no nis, then there is a translation of it

λI − T ∈ B[H] with no nis that lies in the closure of the nilpotent.

Note that the set of nilpotent operators is trivially included in the set of quasinilpo-

tent operators, which is included in the closure of the set of the nilpotent operators
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(see, e.g., [40, 40]), which in turn is included in the set of all biquasitriangular

operators (as we saw above). It is also worth noticing that operators of the form

N +K, where N is normal and K compact, are quasitriangular [16], and so they

are biquasitriangular (since the adjoint of normal or compact is again normal or

compact). In fact, the set of all operators of the form N +K coincides with the set

of biquasitriangular that are essentially normal (see e.g., [40, p. 38]). Recall that an

operator is essentially normal if its image under the natural quotient map of B[H]

into the Calkin algebra B[H]/B∞[H] is normal, where B[H]/B∞[H] is the quotient

algebra of B[H] modulo the ideal B∞[H] of all compact operators from B[H]. Equiv-

alently, an operator T is essentially normal if its self-commutator D = T ∗T − T T ∗

is compact.

The invariant subspace problem remains unsolved for hyponormal operators.

In this case, besides the above conditions, there is also the following one [40, p. 50]:

If there is a hyponormal T ∈ B[H] with no nis, then it is of the form N +K.

In addition, if a hyponormal T has no nis, then area(σ(T )) > 0 (“area” means pla-

nar Lebesgue measure) by the Putnam inequality [42] (also see [6, p. 156] and

[37, p. 31]), and σ(T ∗T ) is an interval [43]. Moreover, a deep result from [4] says

that σ(T )◦= ∅: the spectrum of a hyponormal operator with no nis has empty

interior.

Let N il, Alg and QN il denote the classes of nilpotent (Tn = O for some posi-

tive integer n), algebraic (p(T ) = O for some nonzero polynomial p), and quasinilpo-

tent (σ(T ) = {0}) operators. Let QD, BQT , and EN stand for quasidiagonal, biqu-

asitriangular, and essentially normal; and let N+K be the class of all operators

which are the sum of normal plus compact (including trivially the normal and

compact operators individually). Recall that B∞[H], N+K, QD, EN , and BQT
are closed in B[H] and invariant under compact perturbation (see e.g., [40, p. 38,

40] and [20, p. 170, 172]). These classes are related as follows (see e.g., [40, p. 37–40,

48]).

N+K = QD ∩ EN = BQT ∩ EN ⊂ QD ⊂ BQT ,
N il⊂Alg⊂Alg−= BQT , N il⊂QN il⊂N il−⊂BQT , QN il ∩ EN ⊂B∞[H].

Further equivalent expressions for BQT go as follows [20, p. 171]:

BQT = {T ∈ B[H] : T is similar to a normal operator with finite spectrum}−

= {T ∈ B[H] : T is similar to a normal operator}−

= {T ∈ B[H] : T is similar to a quasidiagonal operator}−

= {T ∈ B[H] : σ(T ) is totally disconnected}−

= {T ∈ B[H] : σ(T ) has empty interior}−.
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We now return to contractions. Note that the invariant subspace problem is

invariant under scalar multiplication (T and αT have the same lattice of invariant

subspaces for every α ∈ C) — there exists an operator without a nis if and only if

there exists a contraction without a nis.

If a contraction has no nis, then it is completely nonunitary,

which is a trivial corollary of Nagy–Foiaş–Langer decomposition for contractions.

On the other hand, another deep result from [5] (also see [1]) gives an important

condition. A contraction whose spectrum includes the unit circle has a nis:

If a contraction T has no nis, then it ∂D 6⊆ σ(T ).

Recall that a hyperinvariant subspace for an operator is a subspace that is invariant

for every operator that commutes with it, which is a particular case of invariant

subspace. A nonscalar contraction without a nontrivial hyperinvariant subspace is

either of class C00, or of class C01, or of class C10 [27]. We shall be interested in the

following especial case [28, p. 85].

If a contraction has no nis, then it is of class C00, or C10, or C01

and, if it is of class C10 or of class C01, then A or A∗ is a proper contraction,

respectively (i.e., either ‖Ax‖ < ‖x‖ or ‖A∗x‖ < ‖x‖ for x 6= 0). Since a completely

nonunitary contraction has property PF if and only if it is of class C·0 [9] (and

since a contraction has property PF if and only if its completely nonunitary direct

summand has property PF), we get the next result [31].

If neither T nor T ∗ have property PF, then the contraction T has a nis.

Question 1. Are biquasitriangular contractions asymptotically partially isometric?

Biquasitriangular means that the operator and its adjoint are quasitriangular,

Thus we can rewrite the above question as follows. Is it true that if

T and T ∗ are quasitriangular contractions, then A = A2 and A∗= A2
∗ ?

This question can be tightened as follows.

Is it true that if T is a quasitriangular contractions, then A = A2 ?

If Question 1 has an affirmative answer, then a biquasitriangular contraction

T admits a decomposition T = B ⊕ S− ⊕ S+ ⊕ U (Theorem 1(b)) but now just
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some direct summands might be missing; a unilateral shift S+ is not quasitriangular

[16], although the direct sum S− ⊕ S+ may be — that is, if one is the adjoint of the

other (same multiplicity), then their direct sum is quasidiagonal [17]. Therefore, it

is tempting to think that Question 1 might be tightened as follows.

Question 1′. Is it true that if T is a biquasitriangular contraction, then A = A∗?

Consider once again the Nagy–Foiaş–Langer decomposition T = C ⊕ U for a

contraction T , where C is completely nonunitary and U is unitary. According to

Theorem 1(c), Question 1′ can be rewritten in terms of C as follows.

Is the completely nonunitary part of a biquasitriangular contraction of class C00 ?

Equivalently, is it true that if

T is a biquasitriangular contraction, then T and T ∗ have property PF ?

An affirmative answer to Question 1′ would imply that T = B ⊕ U (Theo-

rem 1(c)), which trivially implies an affirmative answer to Question 1. Recalling

that U is biquasitriangular (it is normal), and that a (countable) direct sum of biqu-

asitriangular operators is again biquasitriangular [16], the situation here is simpler;

any direct summand might be missing.

Answer 1′. No. T = S+ ⊕ S+

∗ is a biquasitriangular contraction for which A 6= A∗.

Indeed, if S+ is a unilateral shift (of multiplicity one), then S+ ⊕ S+

∗ is quasitrian-

gular [17]. Since it is unitarily equivalent to its own adjoint, it follows that it is

biquasitriangular. Hence S+ ⊕ S+

∗ is a completely nonunitary biquasitriangular con-

traction which, of course, is not of class C00. In fact, if T = S+ ⊕ S+

∗, then A = I ⊕O

and A∗= O ⊕ I. Thus the contraction S+ ⊕ S+

∗ supplies a negative answer to Ques-

tion 1′, but not to Question 1; S+ ⊕ S+

∗ is an asymptotically partially isometric

biquasitriangular contraction.

Example 2. Let T be the unilateral weighted shift of Example 1. It is a hyponormal

(its positive weight sequence is increasing) contraction. Since T is not asymptotically

partially isometric, we should verify whether it survives Question 1. Yes, it does;

it is not quasitriangular (reason: T ∗T = diag{w2
k}k≥0 ≥ (3/4)I and N (T ∗) 6= {0}

[17, p. 904]); neither is O ⊕ T [16, p. 293]. Note that T 6∈ N+K = QD ∩ EN =

BQT ∩ EN since T 6∈ BQT , but T ∈ EN (i.e., T ∗T − T T ∗∈ B∞[H]) and so T 6∈ QD.

A question simpler than Question 1 (in the sense that an affirmative answer to

Question 1 would trivially imply an affirmative answer to it) deals with contractions

in the closure N il− of the nilpotent operators.
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Question 2. Are contractions in N il− asymptotically partially isometric?

Questions 1 and 2 have at least one important consequence: an affirmative

answer to Question 1 leads to an affirmative answer to Question 2, which leads to

an affirmative answer to a classical open question (for equivalent versions, see [27]).

Question 3. Does a contraction not in C00 have a nis?

Theorem 2. If every biquasitriangular contraction (or if every contraction in N il−)

is asymptotically partially isometric, then every contraction not in C00 has a non-

trivial invariant subspace.

Proof. Suppose there is a contraction without a nontrivial invariant subspace.

Equivalently, suppose there is a contraction T with no nis in N il−⊂ BQT . If every

contraction in BQT (in particular, in N il−) is asymptotically partially isometric,

then T is such that A = A2 and A∗= A2
∗. However, if a contraction T with A = A2

and A∗= A2
∗ has no nis, then T ∈ C00 (i.e., A = A∗= O) by Theorem 1(b). (Indeed,

T = B ∈ C00 since the other possible direct summands S−, S+ and U — isometries

and coisometries — have a nis.) Equivalently (under the above assumption), if

T 6∈ C00, then it has a nis.

We saw that if a hyponormal operator has no nis, then it is of the form N +K.

There is a myriad of attributes that a hyponormal contraction without a nis (if

there exists such a contraction) must satisfy. Among them are the following.

If a hyponormal contraction has no nis, then it is of class C00 or of class C10

and, if it is of class C10, then the nonnegative A is a completely nonprojective (i.e.,

Ax 6= A2x for x 6= 0) nonstrict proper contraction (i.e., ‖A‖ = 1 and ‖Ax‖ < ‖x‖ for

x 6= 0) [32]. Besides, it can be inferred from [24] that A has no eigenvalue, and hence

σ(A) = σC(A). (Reason: since T ∗AT = A, so that A is a T -Toeplitz operator, if A

has an eigenvalue, which must be positive because A is nonnegative and completely

nonprojective, then the restriction of T to a nonzero invariant subspace is similar

to an isometry, and so T has a nontrivial invariant subspace — cf. [24, Theorem 14,

p. 394] or [25, Theorem 6, p. 126]). Still in this case (T ∈ C10), Proposition 2 ensures

that µ
(

σ(T ) ∩ ∂D
)

> 0 (where σ(T ) = σC(T ) is connected, and µ is the Lebesgue

measure on ∂D). In any case (T ∈ C00 ∪ C10), if a hyponormal contraction T has no

nis, then the cnu T is a nonstrict proper contraction (i.e., ‖T‖ = 1 and ‖Tx‖ < ‖x‖
for x 6= 0) and its self-commutator O ≤ D = T ∗T − T T ∗ is a strict contraction (i.e.,

‖D‖ < 1) [32]. Moreover, D is trace-class (thus compact) with ‖D‖1 ≤ 1 (where

‖ · ‖1 denotes trace-norm) by the Berger–Shaw Theorem [2,3] (also see [6, p. 152]
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and [37, p. 127]). As we had already seen, a hyponormal contraction with no nis is

essentially normal, which means that D is compact; and it is a strict contraction

even if it is a rank-one operator.

Again, questions simpler than Question 1 (in the sense that an affirmative

answer to Question 1 would trivially imply affirmative answers to them) read as

follows.

Question 4. Are quasidiagonal contractions asymptotically partially isometric?

In other words, since T is quasidiagonal if and only if T ∗ is, is it true that if

T is a quasidiagonal contraction, then A = A2 and A∗= A2
∗ ?

In particular, we get the following even simpler (in the same sense) question.

Question 5. Is a contraction of the form N +K asymptotically partially isometric?

Equivalently, is it true that if

T is a contraction of the form N +K, then A = A2 and A∗= A2
∗ ?

Observe that, since N+K ⊂ QD ⊂ BQT , an affirmative answer to Question 1

implies an affirmative answer to Question 4, which in turn implies an affirmative

answer to Question 5. Thus Questions 4 and 5 also have at least one important

consequence, namely, an affirmative answer to Question 4 leads to an affirmative

answer to Question 5, which in turn leads to an affirmative answer to another

classical open question — the hyponormal version of Question 3:

Question 6. Does a hyponormal contraction not in C00 have a nis?

Theorem 3. If every quasidiagonal contraction (or if every contraction of the form

N + K) is asymptotically partially isometric, then every hyponormal contraction

not in C00 has a nontrivial invariant subspace.

Proof. Let T be a hyponormal contraction. Suppose T has no nis. Recall that if

there is an hyponormal operator without a nis, then it lies in N+K ⊂ QD. Thus

T ∈ N+K ⊂ QD. Suppose every contraction in QD (in particular, in N + K) is

asymptotically partially isometric. Then T is such that A = A2. However, as we saw

before, if a hyponormal contraction T with no nis is such that A = A2 then T ∈ C00

(because if it is not in C00, then it must be in C10 with a completely nonprojective

A.) Equivalently (under the above assumption), if T 6∈ C00, then it has a nis.

An immediate corollary of Theorem 3 with a sharper statement reads as

follows.
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Corollary 1. If every quasidiagonal hyponormal contraction (or if every hyponormal

contraction of the form N + K) is asymptotically partially isometric, then every

hyponormal contraction not in C00 has a nontrivial invariant subspace.

5 Final remarks

Observe through Theorem 1 that, if A is a projection, then the contraction T has

a nis, provided that A 6= O — that is, provided that T 6∈ C0· (in fact, a nonscalar

contraction T 6∈ C01 ∪ C10 ∪ C00 has a nontrivial hyperinvariant subspace). There-

fore, the invariant subspace problem is naturally linked to asymptotically partially

isometric contractions (witness: Question 3, which has been exhaustively investi-

gated in the literature, is naturally linked to Theorem 1(c)). However, the invariant

subspace problem is not the central theme of this expository paper (for expository

papers on the invariant subspace problem the reader is referred to, for instance,

[1, 46,47]). Actually, the present paper is not built around the above contact point

with the invariant subspace problem, in the hope that one could solve the invariant

subspace problem for many operators by showing that they fit in the above scheme.

On the contrary, the central focus of the paper is asymptotically partially isometric

contraction “per se”, which has shown to be a large class of operators, being relevant

even for investigating invariant subspace problems.

Perhaps another question that might arise when investigating contractions T

for which A is a projection would be related to the shape of the spectrum of T .

For instance, is there any property that the shape of the spectrum of a contraction

T must possess if A is a projection? The answer is “no”. Indeed, since normal con-

tractions are such that A is a projection, it follows that every compact subset Ω

of the complex plane C, included in the closed unit disc D
−, is the spectrum of

a contraction T for which A is a projection. Example: let Ω ⊆ D
− ⊂ C be any

compact set included in D
−, which is separable — either because it is a compact

set on metric space, or because it is subset of a separable metric space — and

hence there is a countable set Λ ⊆ Ω dense in Ω. Thus take a diagonal operator

T on ℓ2+ whose diagonal entries {λk} consist of an enumeration of the elements of

Λ. Therefore, the shape of the spectrum σ(T ) = Λ− = Ω of T does not affect the

property of A being a projection.
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Note added in proof

Part of this paper was presented at the Sz.-Nagy Centennial Conference held in

Szeged, Hungary (June 2013). Vladimir Müller gave a negative answer to Ques-

tion 1: the bilateral weighted shift T = shift{wk} on ℓ2 with wk = −k
1−k for

k < 0 and wk = (k+1)(k+4)
(k+2)(k+3) for k ≥ 0 is a BQT contraction for which A 6= A2.

Indeed, this is an injective (wk > 0) proper C10-contraction (wk < 1) such that

limk→−∞ wk = limk→∞ wk = 1, and so σP (T ) = σP (T
∗) = ∅ ([48, Proposition 15,

p. 72, and Theorem 9, p. 71]), which implies that it is BQT . Since T is a proper C10-

contraction, A is completely nonprojective (0 < ‖Ax‖ = ‖A 1
2TA

1
2x‖ < ‖A 1

2x‖ for

x 6= 0). György Gehér gave a negative answer to Question 5 by pointing out that a

perturbation of a bilateral (unweighted) shift U by a compact bilateral weighted shift

K, say, T = U−K for K = shift{wk} on ℓ2 with lim|k|→∞ wk = 0 lies in N +K.

Selecting the nonnegative weights wk such that T is a contraction (0 ≤ 1− wk ≤ 1)

and A 6= A2, a negative answer to Question 5 (and so to Questions 4 and 1) is

supplied.
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