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Contractions T for which A is a projection
CARLOS S. KUBRUSLY*
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Abstract. If T is a Hilbert space contraction, then T*"T™ > A, where A is
a nonnegative contraction. The strong limit A is a projection if and only
T = G@V, where G is a strongly stable contraction and V' is an isometry.
This article is an expository paper on the class of contractions 7' for which A
is a projection. After surveying such a class, it is shown that it is quite a large
class. Indeed, it includes (i) all contractions whose adjoint has property PF,
and also (ii) all contractions whose intersection of the continuous spectrum of
its completely nonunitary direct summand with the unit circle has Lebesgue
measure zero. Some new questions are investigated as well. For instance, is
A a projection for every biquasitriangular contraction T'7 If so, then every
contraction not in class Cgp has a nontrivial invariant subspace.

1 Introduction

Throughout this paper H will stand for a complex Hilbert space. By an operator
on H we mean a bounded linear transformation of H into itself. Let N (T) denote
the kernel of an operator T (i.e., N(T) = T-}({0}) = {z € H: Tz = 0}), which
is a subspace (i.e., a closed linear manifold) of H, and let R(T) denote the range
of T (i.e., R(T) = T(H)), which is a linear manifold of H. A contraction is an
operator T such that ||T]] <1 (i.e., such that ||Tz| < ||z|| for every = in H). Let
T* denote the adjoint of T', and let I be the identity operator. An isometry is a
contraction V' such that V*V =T (i.e., an operator V such that ||Vz| = ||z| for
every x in H), and a coisometry is a contraction whose adjoint is an isometry. An
operator U is unitary if it is both an isometry and a coisometry (equivalently, if it
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is a normal isometry, or a surjective isometry, or still an invertible isometry). If T'
is a contraction, then {T*"T"},,>¢ is a bounded monotone sequence of self-adjoint
operators (a nonincreasing sequence of nonnegative contractions, actually) so that

T T 55 A:

that is, {T*"T"},>0 converges strongly to an operator A. Basic properties of the
strong limit A have been extensively investigated in the current literature (see e.g.,
[55, p. 38], [8,12,33,34,36,41], [28, Chapter 3|, and [29, Chapter 6]. In particular, for
every contraction T', the strong limit A of {T*"T"},,>¢ is a nonnegative contraction,
which is nonstrict whenever it is not null; that is,

O<A<I and |A|| =1 whenever A# O

(where O stands for the null operator). Quite recently, a complete characterization
of nonnegative contractions A that are strong limits of {T*"T"},,>¢ was considered
in [13]. The above are properties shared by (orthogonal) projections but A is not
necessarily a projection (it is not necessarily idempotent).

Example 1. The unilateral weighted shift 7'= shift{(k+1)"*(k+2)""(k+3)"*}r>0
on ¢? is a nonstrict proper contraction for which A = diag{(k + 1)(k + 2) '}x>0 is
a completely nonprojective diagonal (cf. [34] or [28, pp. 51, 52]). In other words,
|T|| =1 and ||Tz|| < ||z|| for every nonzero z in £} (i.e., T'is a nonstrict proper con-
traction) because the weight sequence {wy}r>0 = {(k+1)"*(k+2) " (k+3)"*} k>0
is increasing in [,/3/4,1) and converges to 1; and Ax # A%z for every nonzero z in
% (ie., A is completely nonprojective).

In fact, A is a projection if and only if it commutes with T (cf. [8]; also see [34]):

A=A? ifandonlyif AT =TA.

Since T* is a contraction whenever T is, the sequence {T"T*"},>¢ converges
strongly too. Let A, be its strong limit,

™" =5 A,
which, of course, share the same properties of A (by replacing T with T™*).

The present article consists of a research-expository paper on the class of
contractions 7" for which A is a projection. A brief survey on this class is followed
by an analysis on the role it plays towards well-known invariant subspace problems.
Such a class is fully characterized in Theorem 1 (Section 2) and, in light of this
characterization, we call those contractions asymptotically partially isometric. Two

Acta Scientiarum Mathematicarum 80:3-4 (2014) (© Bolyai Institute, University of Szeged



Contractions T' for which A is a projection 605

fundamental results which are enough to unfold many subclasses of it (e.g., cohy-
ponormal, compact, and algebraic contractions) are isolated in Propositions 1 and 2
(Section 3). We link this class with classical open questions on invariant subspaces
(Section 4). For example, are biquasitriangular contractions asymptotically par-
tially isometric? If so, then a contraction not in class Cgo has a nontrivial invariant
subspace, as shown in Theorem 2. The hyponormal counterpart is investigated in
Theorem 3.

2 Asymptotically partially isometric contractions

An operator T on a complex Hilbert space H is weakly, strongly, or uniformly
stable (notation: 7" - O, T™ - O, or T™ - O) if the power sequence {T™},,>¢
converges weakly, strongly, or uniformly to the null operator (i.e., if (T"x;x) — 0
for every z in H, ||[T"x| — 0 for every x in H, or ||T™| — 0), respectively. Thus
a strongly stable contraction is precisely a contraction of class Cy. and, dually, a
contraction whose adjoint is strongly stable is precisely a contraction of class C.q,
so that a contraction T is of class Cqyp if and only if both T" and T™ are strongly
stable (see [55, p. 76]). Since

IT"z|| — HA%SCH for every xz € H,
it follows that a contraction T is strongly stable if and only if A = O; that is,
T" =5 O ifand only if A=0.
On the other hand, a contraction T is an isometry if and only if A = I; that is,
T*T=1 ifandonlyif A=1,
which is readily verified. Actually, for every nonnegative integer n,
T*"AT™ = A so that ||A%T"z\| = ||A%xH for every x € H.

Thus strongly stable contractions and isometries are classes of contractions T for
which A is a trivial projection. Therefore, since an operator is a backward unilateral
shift (of any multiplicity) if and only if it is a strongly stable coisometry — see e.g.,
[28, p. 88], it follows that a contraction

T is a unilateral shift if and only if A =1 and A, = O.
Moreover, although the assertion

A=A, implies A= A% and A, = A2
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holds (cf. [34] or [28, p. 53]), the unilateral shift shows that the converse fails.

Let M be a subspace (i.e., a closed linear manifold) of . If T is an operator
on H, then T'| x4 is the restriction of T to M. Recall that H admits the orthogonal
decomposition H = M @& M=+, where M+ = H & M is the orthogonal complement
of M in H. Let V be an isometry on M. It is clear that the direct (orthogonal) sum
O @V onH =M@ M- is a partial isometry (a contraction that acts isometrically
on the orthogonal complement of its kernel). In fact, this is the simplest nontrivial
instance of a power partial isometry (a partial isometry for which all its powers are
again partial isometries). It was proved in [19] that every power partial isometry is
a direct sum of a truncated unilateral shift, a unilateral shift, a backward unilateral
shift, and a unitary operator (where, of course, it is understood that not all four
direct summands need to be present in every case). Note that the converse holds
trivially because each possible direct summand is a power partial isometry. Since
truncated shifts are nilpotent, it follows at once that every power partial isometry
is a contraction for which A = A? and A, = A2. (Indeed, A=0& 19O I and
A, =000 Ia I if all four direct summands are present.) The above italicized
result from [19] can be thought of as a special case of Theorem 1(b) below, where
the nilpotent direct summand is extended to a contraction of class Cqg.

Let T be a contraction on H. If there exists a subspace M of H for which

T=GaV

on H = M@ ML where G is a strongly stable contraction on M, and V is
an isometry on M=, then we say that T is an asymptotically partially isometric
contraction. This means that the power sequence {T™},>( approaches the sequence
of power partial isometries {O @ V"},,>¢ in the strong operator topology;

" - (0® V") - 0.

The forthcoming Theorem 1(a) says that a contraction T is asymptotically partially
isometric if and only if A is a projection. We borrow Theorem 1 from [34] (part
of it appeared in [8]; also see [28, p. 83]). First recall the von Neumann—Wold
decomposition for isometries (e.g., [55, p. 3] or [28, p. 81]): If T is an isometry on
H, then

T=5 U,

where S. = T|nr(r—a.y+ is a unilateral shift and U= T|xr;—a.) s unitary. This can
be viewed as a special case of the Nagy—Foiag—Langer decomposition for contractions
[53], [35] (also see [55, p. 8] or [28, p. 76]): If T is a contraction on H, then

T=CaU,
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where C = Ty1 is a completely nonunitary contraction and U = Ty is unitary
onUd = N(I—A)NN(I — A,). These decompositions are unique, and a contrac-
tion is completely nonunitary (cnu) if it has no nonzero unitary direct summand,;
equivalently, if the restriction of it to any nonzero reducing subspace is not unitary.
The cnu direct summand C' is referred to as the cnu part of T, and the unitary U
as the unitary part of T. (Contractions of class Cy. or C.q, and so of class Cqp, are
cnu-unilateral shifts S, and backward unilateral shifts S_ are cnu contractions.)

Theorem 1. Let T be a contraction on a Hilbert space. Then
A=A* ifandonlyif T=GaS, aU, ((a))

where G is a Co.-contraction (i.e., strongly stable) on N'(A), S. is a unilateral shift
on N(I —A)NN(A.), and U is a unitary operator on N(I — A)NN(I — A,);

A=A and A, =A? ifandonlyif T=BoS &S, aU, (b))

where B is a Coo-contraction on N(A) NN (A.) and S_ is a backward unilateral
shift (i.e., the adjoint of a unilateral shift) on N(A) NN (I — A.); and

A=A, ifandonlyif T=BoU. ((¢))

Sketchy proof. (a) If A= A% then H = N(A — A?). However, it can be verified
that N'(A — A%) = N(A) @ N(I — A), where N'(A) and N (I — A) are orthogonal,
complementary in N'(A — A?), and T-invariant subspaces. Therefore,

T=GoYV,

where G = T'|yr(a) is a strongly stable contraction on N (A) and V = T'|yr(;—a) is
an isometry on N (I — A). Using the von Neumann-Wold decomposition for V,

T:G@S+@U,

where S, = V| is a unilateral shift on M and U = V| is unitary on &, M and U
being orthogonal complementary subspaces of N'(I — A), so that G & S, is comple-
tely nonunitary. By the Nagy—Foias—Langer decomposition it can be shown that

U=NI-ANNI—-A,) and M=N{I-A)NN(A,).

Conversely, '=G® S, @ U implies A=0d161.
(b) Since G is a contraction on N (A), let the operator A on N(A) be the
strong limit of {G"G*"}. It can be verified that

NA)NNA) =N(AL)  and N(A) NN —A,) =N — AL).
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If, in addition to A = A% A, = A2, then A, = A2, and hence G* admits a decom-
position as in (a), so that G = B@® S_, and therefore

T=BoS @S, U,

with B =G|nar)=Tln(a)nn(a,), & strongly stable contraction on N(A) NN (A,)
whose adjoint B* also is strongly stable, and S_ = G|N(1—A;) =T|na)N(1-a,) IS a
strongly stable (so completely nonunitary) contraction on N (A) NN (I — A,) whose
adjoint is a (completely nonunitary) isometry, so that it is a backward unilateral
shift. Conversely, if T =B ® S_ ® S, ® U, then A = A% and A, = A2.

(c) If A= A,, then A = A% and A, = A? [34], so that T and T* can be
decomposed as in (b). Thus, using the decomposition in (b) for 7" and T it can be
shown that

T=B&U,

on H = N(A) @N(I - A), with B = T|na) and U = T|p/(;—a), where B is a
Coo-contraction on N'(A) and U is unitary on N'(I — A). Conversely, if T = B& U,

then A = A, = O @ 1. (For the detailed proof see [29, p. 60-62].) -

It is understood that any of the above direct summands may be missing and,
if both summands S_ and S, are present, they may have distinct (finite or infinite)
multiplicities. According to the Nagy—Foiag—Langer decomposition for a contraction
T =C @ U, Theorem 1(a) says that C is of class Cy. (i.e., C is strongly stable) if
and only if A = A? and the direct summand S, is missing in (a), and Theorem 1(c)
says that C' is of class Cqg if and only if A = A,.

3 Two large classes of asymptotically partially isometric
contractions

Asymptotically partially isometric contractions are precisely those contractions T’
for which A is a projection (Theorem 1(a)). Next we isolate two fundamental results
(Propositions 1 and 2 below) which ensure that such a class is quite large.
Counsider the following definition from [9] (see also [58] and [31]). A contraction
T has property PF (a short for Putnam-Fuglede) if either 7* is not intertwined
to any isometry or, if T* is intertwined to some isometry V, then the same trans-
formation that intertwines 7™ to V also intertwines T to the coisometry V*. In
other words, let K be any nonzero complex Hilbert space, and let X : H — I be an
arbitrary nonzero bounded linear transformation of H into . A contraction 7" on
‘H has property PF if, whenever the equation X7 = VX holds for some isometry
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V on IC, then XT = V*X. Here are two well-known basic facts on contractions with
property PF (rather elementary proofs of these results appeared in [31]).

Every isometry has property PF.
If a coisometry has property PF, then it is unitary

It is worth remarking that, although property PF for contractions as posed above
was introduced in [9], the problem of generalizing (in many directions) the classical
Fuglede-Putnam Theorem (namely, if a bounded linear transformation intertwines
a couple of normal operators, then it also intertwines their adjoints) has been con-
sidered by a large number of authors since [52] — for a review on the pertinent
literature the reader is referred to [7]. The proof of the next proposition was bor-
rowed from [31]; a different one can be found in [58]. The proposition says that
if a contraction T has property PF, then A, is a projection; equivalently, T is
asymptotically partially isometric whenever T* is a contraction with property PF.

Proposition 1. If a contraction T has property PF, then A, = A2. Equivalently, if
a contraction T is such that T* has property PF, then A = A2.

Proof. Take the nonnegative A and an arbitrary integer n > 0. It can be shown
that [28, Section 3.2] there is an isometry V on R(A)~ such that A2T = V Az,
Hence
AT = VA3,
If T* has property PF, then AzT* = V*Az so that AzT*" = V*"Az. Thus
ARVM = T"A%
because A2 is self-adjoint. But A = T*"AT"™ so that
A=T"AT AT = T*" Az V" Az = T*"T" Az A2,

and therefore A = A? (since T*"T" -+ A). -

The class of contractions that have property PF is large. Recall: an operator
T is hyponormal, paranormal, or dominant if O < T*T — TT* ||Tx||* < || T?z]|||z||
for every z in H, or R(A —T) C R(M — T*) for every X € C, respectively, and
cohyponormal if its adjoint is hyponormal. These classes are related as follows:

Every hyponormal operator is dominant and paranormal.

Indeed, dominant contractions and paranormal contractions have property PF (see
e.g., [9], [58], and the references therein):

If a contraction is dominant or paranormal, then it has property PF.
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Thus hyponormal (in particular, normal) contractions have property PF. Therefore,
by Proposition 1, dominant and paranormal contractions 1" are such that A, = A2:

If a contraction T is dominant or paranormal, then A, = AZ.
If T is a cohyponormal contraction, then A = A2,

Recalling that T is normal if and only if it is hyponormal and cohyponormal (i.e., if
T commutes with T*), the above implication ensures that A = A% and A, = A2 if
T is normal. Actually, if T is a normal contraction, then T*"T™ = T"T*" for every
integer n > 0 so that A = A, trivially, which implies that A = A? and A, = A?:

If T is a normal contraction, then A = A,, and hence A = A% and A, = A2

The preceding observation plus Theorem 1(c) lead to the following result.

If T is a normal contraction, then T" = B @ U, where B is a normal
Coo-contraction on N (A) and U is a unitary operator on N'(I — A).

The converse of Proposition 1 fails; even a stronger version fails. For instance, if T’
is a backward unilateral shift (i.e., T =S} and T* = S,), then A= 0 and A, =1
but T" does not have property PF (it is a nonunitary coisometry):

A contraction T with A = A% and A, = A? may not have property PF.

Consider the Sz. Nagy—Foiag—Langer decomposition T'= C' & U of a contraction 7.
In fact, it was proved in [9] that a contraction T has property PF if and only if its
completely nonunitary direct summand is of class C.g. That is,

T = C @ U is a contraction with property PF if and only if C' is of class C.g

(see also [31]). Thus (Theorem 1(c)) contractions T and T* have property PF if
and only if their completely nonunitary direct summands are of class Cqp; that is,

T and T* have property PF if and only if A = A,.

Perhaps a systematic investigation on asymptotically partially isometric con-
tractions has been initiated after Putnam’s paper [44]. It contains the first proof
that a completely nonunitary cohyponormal contraction is strongly stable and, con-
sequently, that if 7™ is a hyponormal contraction, then T'= G & U, where G is a
strongly stable contraction and U is unitary, so that A = A2. Simplified different
proofs followed in [38] (see also [57, pp. 113-116]) and in [33] (see also [28, pp. 77-79])
by using a reverse approach. They first verified that A = A% if T is a cohyponor-
mal contraction and then concluded that a completely nonunitary cohyponormal
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contraction is strongly stable (thus stressing the role played by contractions for
which A is a projection). This was extended to paranormal contractions in [38], and
to dominant contractions in [14] and [56], which are classes of contractions that
include the hyponormal contractions. Summing up:

If a contraction 7= C @ U is dominant or paranormal, then C € C.q.
If T=C@®U is a cohyponormal contraction, then C € Cy..

Extentions to k-paranormal contractions (which include the paranormal) and to
k-quasihyponormal contractions (which include the hyponormal) have been dis-
cussed in the literature. An operator T is k-paranormal if | Tz |**! < || T+ z||||2|*
for some integer k > 1 and every z € H (a paranormal is simply a 1-paranormal
operator), and an operator 7' is k-quasihyponormal if O < T*¥(T*T — TT*)T* for
some integer k > 0 (a hyponormal is simply a 0-quasihyponormal operator — if
k =1, then T is called quasihyponormal). The following result is from [11].

If a contraction T=C @ U is k-paranormal or k-quasihyponormal, then C € C.q.

More extensions along these lines (i.e., for classes of contractions that include the
hyponormal) can be found in [10] and [39]. Extensions along different lines have
also been discussed in the literature. For instance, extension to bicontractions (i.e.,
to a pair of commuting contractions) was considered in [26], and extension to A’-
contractions in [49, 50]. That is, extension to operators T for which there is a
positive A’ such that T*A'T < A’. If the equality holds, then T is said to be an
A’-isometry. (In particular, if T' is a contraction, then it is an A-isometry and also
an I-contraction). Further extensions to noncontractions have been investigated in
[51] by considering the asymptotic limit of 7" which generalizes the strong limit A, as
defined in [21,22] for power bounded operators T, or in [23,24] for operators whose
power sequence satisfies some regularity condition weaker than power boundedness.

Another approach to asymptotically partially isometric contractions evolving
in a different direction and including classes of contractions not related to the above
examples will be proved next. Let o(T) denote the spectrum of an operator T and
consider its classical partition o(T") = op(T) U or(T) U oc(T), where op(T) is the
point spectrum (i.e., the set of all eigenvalues of T'), og(T) = op(T*)*\op(T) is the
residual spectrum, and o¢(T) = o(T)\(op(T) Uor(T)) is the continuous spectrum.
Let p denote the Lebesgue measure on the unit circle 9D (where D denotes the
open unit disc in C). Consider again the Nagy—Foiag-Langer decomposition.

Proposition 2. If a contraction T = C @ U is such that u(oc(C)NOD) = 0, then
A = A,. Equivalently, 1(oc(C) N ID) = 0 implies that T and T™* have property PF,
which in turn implies that A = A% and A, = A2?.
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Proof. Let T = C @ U be a contraction, where C' is a completely nonunitary con-
traction and U is unitary (as always, any of the above direct summands may be
missing). If C' is missing then 7' = U, and A = A, trivially, since U is normal. Thus
suppose C' is not missing. Recall: every completely nonunitary contraction is weakly
stable [15, p. 55], and a weakly stable contraction C is such that op(C) U og(C) is
included in the open unit disc [29, p. 80]. That is (also see [28, pp. 106,114]),

C'is cnu implies C™ = O which implies op(C) U og(C) C D.
Hence
woc(C)NoD) =0 implies u(c(C)NID) = 0.

Since C is a cnu contraction, it follows that
p(o(C)NID) =0 implies C € Cy

(see [55, p. 90], which originated from [54, p. 127]). This means that C and C*
are strongly stable (i.e., T = B@® U), and therefore A = A, = O & I according to

Theorem 1(c). The rest of the statement follows at once by Proposition 1. -

If T is a compact contraction, then A = A,, and hence A = A% and A, = A2.

Indeed, compact (countable spectrum) and algebraic (finite spectrum) contractions
are asymptotically partially isometric by Proposition 2 (and T is compact or alge-
braic if and only if T* is). Quasinilpotent (one-point spectrum) contractions are
also included, but these are trivially asymptotically partially isometric; they lie in
Coo- Another particular case of Proposition 2 reads as follows.

UT=Co®U and oc(C)NID =@, then C € Cqp, and so A= A,.

Such a particular case can be readily verified without the help of the measure
theoretical result from [55, p. 90]. Actually, the previous argument ensures that if
0c(C)NID = @, then o(C') C D, and so r(C') < 1, which means that C™ - O.
(r(-) denotes spectral radius; for further equivalent conditions to uniform stability
see, e.g., [28, p. 11].) Hence C™ -5 O and C*™ -+ O; that is, C € Cqo.

4 Biquasitriangular contractions

Are they asymptotically partially isometric? Before defining biquasitriangular op-
erators and considering this question we need a finer analysis of the spectrum. Let
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B[H] denotes the algebra of all operators on H. Set F; = {T" € B[H]: R(T) is
closed and dim N(T) <oo}, F,. = {T € B[H]: R(T) is closed and dim N (T*) < oo},
F=FNFn,and W={T € F: dimN(T) = dim N (T*)}. These are the classes of
left semi-Fredholm, right semi-Fredholm, Fredholm, and Weyl operators, respectively.
Let 0pe(T) = {N € C: \XI =T € B[H|\Fe¢}, 0re(T) ={A € C: A\ - T € BH|\F.},
g.(T)={NeC: N - T € B[H]\F}, and 0,(T) = {\ € C: \I = T € B[H]\W} be
the left essential spectrum, the right essential spectrum, the essential spectrum,
and the Weyl spectrum of an arbitrary operator T € B[H], respectively. Recall that
00e(T) U 0pe(T) = 0e(T) C 0y(T) C o(T), that 04e(T) = 04e(T) = 0(T) = 04, (T)
if and only if o.(T) has no holes (of nonzero index) and no pseudoholes, and set
00(T) = o(T)\ow(T) (see, e.g., [30, pp. 131-162]).

From now on let H be a complex infinite-dimensional separable Hilbert space.
An operator T € B[H] is quasitriangular (or quasidiagonal) if there is a sequence
{P,} of finite-rank projections in B[H] that converges strongly to the identity
operator and {(I — P,)TP,} (or {TP, — P,T}) converges uniformly to the null
operator [16]. It is plain that T is quasidiagonal if and only if 7* is (since orthogonal
projections are self-adjoint). An operator T is biquasitriangular if both 7" and T* are
quasitriangular. For a collection of results on quasitriangular and biquasitriangular
operators see, for instance, [40, pp. 25-30] and [20, pp. 163-192]. In particular
[40, p. 37],

T € B[H] is biquasitriangular if and only if 04e(T) = 0,¢(T) = 0(T) = 0 (T).

Since every operator on H with a countable spectrum is quasitriangular (see,
e.g., [40, p,29]), it follows that the samples of contractions for Proposition 2 (compact,
algebraic and quasinilpotent) are all biquasitriangular (since adjoint of compact,
algebraic and quasinilpotent are again compact, algebraic and quasinilpotent).

‘One of the most important, most difficult, and most exasperating unsolved
problems of operator theory is the problem of invariant subspaces. The question is
simple to state: does every operator on an infinite-dimensional [separable, complea]
Hilbert space have a non-trivial invariant subspace? “Non-trivial” means different
from both 0 and the whole space, “invariant” means that the operator maps it to
itself” [18, p. 100]. An operator that has a nontrivial invariant subspace is called
intransitive, otherwise it is called transitive. Let “nis” mean “nontrivial invariant
subspace”.

The Riesz Decomposition Theorem (see, e.g., [45, p. 32]) ensures that if the
spectrum o(7T') of an operator T is disconnected then it has a nis:

If there is an operator T' € B[H] without a nis, then o(T') is connected.
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(In this case, the nonempty compact o(7") has no isolated point — a bounded perfect
set.) Recall that N(AI — T') and R(A — T')~ are T-invariant subspaces for every A
in C. Consider the classical partition of the spectrum. Since {0} # N(AI — T) for
every A € op(T), and since T has a nis if and only if 7* has a nis, we may infer:

If there is an operator T' € B[H] without a nis, then o(T") = o¢(T).

Also recall that oc(T) C 04e(T) N 0ye(T) (see e.g., [30, p. 146]). Thus o(T') = oc(T)
implies o(T) = 04e(T) N oyre(T). Note that, if X &€ o4e(T) (i-e., if (A —T) € Fy),
then R(AI — T is closed and dim N'(AI — T) < oo. If R(AI — T) # H, then it is a
nis for T. If N(A\ — T') # {0}, then it is a nis for T (A is an eigenvalue of T). If
R —T)=H and N(A — T) = {0}, then A — T is invertible, which means that
A & o(T). Outcome: if A € o(T)\o¢e(T'), then T has a nis. Since M is a nis for T
if and only if M is nis for 7% it also follows that if A € o(T)\o,.(T), then T has
a nis. Thus, since 0.(T) = 04e(T) U 0,.(T'), we may claim:

If there exists T € B[H] without a nis, then oye(T) = 0,(T) = 0o(T) = o(T).

The previous spectral equivalent definition of biquasitriangular operators en-
sures that, if there is a T € B[H] with no nis, then it is biquasitriangular (since
0e(T) C 0,(T) C o(T)), and 0o(T) = o(T)\ow(T) = @. In fact, recalling that
o0(T) consists of eigenvalues only (see, e.g., [30, p. 151]), it is already empty if T
has no nis. Hence we get the following result.

If there exists T' € B[H] with no nis, then it is biquasitriangular.

Equivalently, if T € B[H] is not biquasitriangular, then it has a nis. The closure
(in B[H]) of the set of all nilpotent operators coincides with the set of all biquasi-
triangular operators T for which o.(T) and o(T') are both connected and 0 € o (T)
(see, e.g., [40, p. 40]). If T has no nis, then it is biquasitriangular, o.(T) = 0,(T) =
o(T) is connected, and either 0 € 0,,(T) or 0 & o(T') (since 0o(T") C op(T) and, if
T has no nis, then op(T') = &). However, by replacing 7' with A\l — T if necessary
(which share the same lattice of invariant subspaces, and are such that o(A] —T') =
A —o(T)), it follows that there is no loss of generality in assuming that 0 € o(7T),
so that 0 € 0,,(T). Thus the previous implication can be tightened as follows.

If there exists T' € B[H] with no nis, then there is a translation of it
Al — T € B[H] with no nis that lies in the closure of the nilpotent.

Note that the set of nilpotent operators is trivially included in the set of quasinilpo-
tent operators, which is included in the closure of the set of the nilpotent operators
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(see, e.g., [40, 40]), which in turn is included in the set of all biquasitriangular
operators (as we saw above). It is also worth noticing that operators of the form
N + K, where N is normal and K compact, are quasitriangular [16], and so they
are biquasitriangular (since the adjoint of normal or compact is again normal or
compact). In fact, the set of all operators of the form N + K coincides with the set
of biquasitriangular that are essentially normal (see e.g., [40, p. 38]). Recall that an
operator is essentially normal if its image under the natural quotient map of B[H]
into the Calkin algebra B[H]/B.[H] is normal, where B[H]/B_.[H] is the quotient
algebra of B[#H] modulo the ideal B, [H] of all compact operators from B[H]. Equiv-
alently, an operator T is essentially normal if its self-commutator D = T*T — T'T*
is compact.

The invariant subspace problem remains unsolved for hyponormal operators.
In this case, besides the above conditions, there is also the following one [40, p. 50]:

If there is a hyponormal T € B[H] with no nis, then it is of the form N + K.

In addition, if a hyponormal 7" has no nis, then area(o (7)) > 0 (“area” means pla-
nar Lebesgue measure) by the Putnam inequality [42] (also see [6, p. 156] and
[37, p. 31]), and o(T*T) is an interval [43]. Moreover, a deep result from [4] says
that o(7)°= @: the spectrum of a hyponormal operator with no nis has empty
interior.

Let Nil, Alg and QNil denote the classes of nilpotent (7™ = O for some posi-
tive integer n), algebraic (p(7T") = O for some nonzero polynomial p), and quasinilpo-
tent (o(T) = {0}) operators. Let @D, BOT, and EN stand for quasidiagonal, biqu-
asitriangular, and essentially normal; and let A'+ K be the class of all operators
which are the sum of normal plus compact (including trivially the normal and
compact operators individually). Recall that B, [H], N+ K, D, EN, and BOT
are closed in B[H] and invariant under compact perturbation (see e.g., [40, p. 38,
40] and [20, p. 170, 172]). These classes are related as follows (see e.g., [40, p. 37-40,
48]).

N+K=9DNEN =BOTNEN C QD C BOT,

Nilc Algc Alg” = BQOT, NilCONilCNil~ CcBQT, QONilNEN CB,[H]
Further equivalent expressions for BQT go as follows [20, p. 171]:
BOQT = {TekB

H]: T is similar to a normal operator with finite spectrum}~

[
{T € B[H]: T is similar to a normal operator}~
{T € B[H]: T is similar to a quasidiagonal operator}~
{T € B[H]: o(T) is totally disconnected}~
= {T € B[H]: o(T) has empty interior}~.
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We now return to contractions. Note that the invariant subspace problem is
invariant under scalar multiplication (7" and o1 have the same lattice of invariant
subspaces for every o € C) — there exists an operator without a nis if and only if
there exists a contraction without a nis.

If a contraction has no nis, then it is completely nonunitary,

which is a trivial corollary of Nagy—Foias—Langer decomposition for contractions.
On the other hand, another deep result from [5] (also see [1]) gives an important
condition. A contraction whose spectrum includes the unit circle has a nis:

If a contraction 7" has no nis, then it 0D € o(T).

Recall that a hyperinvariant subspace for an operator is a subspace that is invariant
for every operator that commutes with it, which is a particular case of invariant
subspace. A nonscalar contraction without a nontrivial hyperinvariant subspace is
either of class Cgo, or of class Co1, or of class Cqg [27]. We shall be interested in the
following especial case [28, p. 85].

If a contraction has no nis, then it is of class Cog, or C1g, or Co1

and, if it is of class Cyp or of class Cp1, then A or A, is a proper contraction,
respectively (i.e., either ||Az|| < ||z|| or ||A,z| < ||z| for x # 0). Since a completely
nonunitary contraction has property PF if and only if it is of class C.¢ [9] (and
since a contraction has property PF if and only if its completely nonunitary direct
summand has property PF), we get the next result [31].

If neither T nor T™ have property PF, then the contraction 7" has a nis.

Question 1. Are biquasitriangular contractions asymptotically partially isometric?

Biquasitriangular means that the operator and its adjoint are quasitriangular,
Thus we can rewrite the above question as follows. Is it true that if

T and T* are quasitriangular contractions, then A = A% and A, = A? ?
This question can be tightened as follows.
Is it true that if T is a quasitriangular contractions, then A = A2 ?

If Question 1 has an affirmative answer, then a biquasitriangular contraction
T admits a decomposition T = B& S_ ¢ S, ® U (Theorem 1(b)) but now just
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some direct summands might be missing; a unilateral shift S, is not quasitriangular
[16], although the direct sum S_ @ S, may be — that is, if one is the adjoint of the
other (same multiplicity), then their direct sum is quasidiagonal [17]. Therefore, it
is tempting to think that Question 1 might be tightened as follows.

Question 1’. Is it true that if 7" is a biquasitriangular contraction, then A = A,?

Consider once again the Nagy—Foiag-Langer decomposition T'= C @ U for a
contraction 7', where C' is completely nonunitary and U is unitary. According to
Theorem 1(c), Question 1’ can be rewritten in terms of C' as follows.

Is the completely nonunitary part of a biquasitriangular contraction of class Cqyg ?
Equivalently, is it true that if
T is a biquasitriangular contraction, then 7" and 7™ have property PF ?

An affirmative answer to Question 1’ would imply that 7= B @& U (Theo-
rem 1(c)), which trivially implies an affirmative answer to Question 1. Recalling
that U is biquasitriangular (it is normal), and that a (countable) direct sum of biqu-
asitriangular operators is again biquasitriangular [16], the situation here is simpler;
any direct summand might be missing.

Answer 1'. No. T' =S, & S is a biquasitriangular contraction for which A # A,.
Indeed, if S, is a unilateral shift (of multiplicity one), then S, & S} is quasitrian-
gular [17]. Since it is unitarily equivalent to its own adjoint, it follows that it is
biquasitriangular. Hence S, @ ST is a completely nonunitary biquasitriangular con-
traction which, of course, is not of class Cog. In fact, if T =S, & Sf,then A=T1¢ O
and A, = O @ I. Thus the contraction S, @ S} supplies a negative answer to Ques-
tion 1/, but not to Question 1; S, @ ST is an asymptotically partially isometric
biquasitriangular contraction. -
Example 2. Let 7" be the unilateral weighted shift of Example 1. It is a hyponormal
(its positive weight sequence is increasing) contraction. Since T is not asymptotically
partially isometric, we should verify whether it survives Question 1. Yes, it does;
it is not quasitriangular (reason: T*T = diag{w} }x>0 > (3/4)I and N (T*) # {0}
[17, p. 904]); neither is O & T [16, p. 293|. Note that T¢N+ K = QDNEN =
BOTNEN since T ¢ BOT, but T € EN (ie., T*T—TT*€ B [H]) and so T & OD.

A question simpler than Question 1 (in the sense that an affirmative answer to
Question 1 would trivially imply an affirmative answer to it) deals with contractions
in the closure Ail~ of the nilpotent operators.
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Question 2. Are contractions in AVil~ asymptotically partially isometric?

Questions 1 and 2 have at least one important consequence: an affirmative
answer to Question 1 leads to an affirmative answer to Question 2, which leads to
an affirmative answer to a classical open question (for equivalent versions, see [27]).

Question 3. Does a contraction not in Cyg have a nis?

Theorem 2. If every biquasitriangular contraction (or if every contraction in Nil™)
is asymptotically partially isometric, then every contraction not in Coy has a non-
trivial invariant subspace.

Proof. Suppose there is a contraction without a nontrivial invariant subspace.
Equivalently, suppose there is a contraction 7" with no nis in Nil~ C BOQT. If every
contraction in BQT (in particular, in A4l7) is asymptotically partially isometric,
then T is such that A = A? and A, = A2Z. However, if a contraction T with A = A?
and A, = A? has no nis, then T € Cqq (i.e., A = A, = O) by Theorem 1(b). (Indeed,
T = B € Cq since the other possible direct summands S_, S, and U — isometries
and coisometries — have a nis.) Equivalently (under the above assumption), if

T & Cpp, then it has a nis. -

We saw that if a hyponormal operator has no nis, then it is of the form N + K.
There is a myriad of attributes that a hyponormal contraction without a nis (if
there exists such a contraction) must satisfy. Among them are the following,.

If a hyponormal contraction has no nis, then it is of class Cgg or of class Cig

and, if it is of class Cjg, then the nonnegative A is a completely nonprojective (i.e.,
Ax # A%x for x # 0) nonstrict proper contraction (i.e., |A|| = 1 and ||Az|| < ||z]| for
x # 0) [32]. Besides, it can be inferred from [24] that A has no eigenvalue, and hence
0(A) = oc(A). (Reason: since T*AT = A, so that A is a T-Toeplitz operator, if A
has an eigenvalue, which must be positive because A is nonnegative and completely
nonprojective, then the restriction of T to a nonzero invariant subspace is similar
to an isometry, and so T" has a nontrivial invariant subspace — cf. [24, Theorem 14,
p. 394] or [25, Theorem 6, p. 126]). Still in this case (T € C1¢), Proposition 2 ensures
that (o(T) N OD) > 0 (where o(T) = oc(T) is connected, and p is the Lebesgue
measure on ID). In any case (T € Cqp U Cyp), if a hyponormal contraction T has no
nis, then the cnu 7' is a nonstrict proper contraction (i.e., ||T']] = 1 and ||Tz|| < ||z|
for z # 0) and its self-commutator O < D = T*T — T'T* is a strict contraction (i.e.,
|ID|| < 1) [32]. Moreover, D is trace-class (thus compact) with ||D||; <1 (where
|l - |1 denotes trace-norm) by the Berger—Shaw Theorem [2, 3] (also see [6, p. 152]
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and [37, p. 127]). As we had already seen, a hyponormal contraction with no nis is
essentially normal, which means that D is compact; and it is a strict contraction
even if it is a rank-one operator.

Again, questions simpler than Question 1 (in the sense that an affirmative
answer to Question 1 would trivially imply affirmative answers to them) read as
follows.

Question 4. Are quasidiagonal contractions asymptotically partially isometric?
In other words, since T is quasidiagonal if and only if T is, is it true that if
T is a quasidiagonal contraction, then A = A% and A, = A2 ?
In particular, we get the following even simpler (in the same sense) question.
Question 5. Is a contraction of the form N + K asymptotically partially isometric?

Equivalently, is it true that if
T is a contraction of the form N + K, then A = A% and A, = A2 ?

Observe that, since N+ K C @D C BQT, an affirmative answer to Question 1
implies an affirmative answer to Question 4, which in turn implies an affirmative
answer to Question 5. Thus Questions 4 and 5 also have at least one important
consequence, namely, an affirmative answer to Question 4 leads to an affirmative
answer to Question 5, which in turn leads to an affirmative answer to another
classical open question — the hyponormal version of Question 3:

Question 6. Does a hyponormal contraction not in Cgp have a nis?

Theorem 3. If every quasidiagonal contraction (or if every contraction of the form
N + K) is asymptotically partially isometric, then every hyponormal contraction
not in Cop has a nontrivial invariant subspace.

Proof. Let T be a hyponormal contraction. Suppose T has no nis. Recall that if
there is an hyponormal operator without a nis, then it lies in N+ K C QD. Thus
T € N+ K C QD. Suppose every contraction in QD (in particular, in N 4 K) is
asymptotically partially isometric. Then T is such that A = A2. However, as we saw
before, if a hyponormal contraction T with no nis is such that A = A2 then T € Cqq
(because if it is not in Cqg, then it must be in C1o with a completely nonprojective

A.) Equivalently (under the above assumption), if T' ¢ Cgo, then it has a nis. -

An immediate corollary of Theorem 3 with a sharper statement reads as
follows.
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Corollary 1. If every quasidiagonal hyponormal contraction (or if every hyponormal
contraction of the form N + K) is asymptotically partially isometric, then every
hyponormal contraction not in Coo has a nontrivial invariant subspace.

5 Final remarks

Observe through Theorem 1 that, if A is a projection, then the contraction 7" has
a nis, provided that A # O — that is, provided that T' & Cy. (in fact, a nonscalar
contraction T' & Co1 U C19 U Coo has a nontrivial hyperinvariant subspace). There-
fore, the invariant subspace problem is naturally linked to asymptotically partially
isometric contractions (witness: Question 3, which has been exhaustively investi-
gated in the literature, is naturally linked to Theorem 1(c)). However, the invariant
subspace problem is not the central theme of this expository paper (for expository
papers on the invariant subspace problem the reader is referred to, for instance,
[1,46,47]). Actually, the present paper is not built around the above contact point
with the invariant subspace problem, in the hope that one could solve the invariant
subspace problem for many operators by showing that they fit in the above scheme.
On the contrary, the central focus of the paper is asymptotically partially isometric
contraction “per se”, which has shown to be a large class of operators, being relevant
even for investigating invariant subspace problems.

Perhaps another question that might arise when investigating contractions 7'
for which A is a projection would be related to the shape of the spectrum of T
For instance, is there any property that the shape of the spectrum of a contraction
T must possess if A is a projection? The answer is “no”. Indeed, since normal con-
tractions are such that A is a projection, it follows that every compact subset €2
of the complex plane C, included in the closed unit disc D™, is the spectrum of
a contraction 7' for which A is a projection. Example: let @ C D~ C C be any
compact set included in D™, which is separable — either because it is a compact
set on metric space, or because it is subset of a separable metric space — and
hence there is a countable set A C Q dense in €. Thus take a diagonal operator
T on ¢? whose diagonal entries {\;} consist of an enumeration of the elements of
A. Therefore, the shape of the spectrum o(T) = A~ = Q of T' does not affect the
property of A being a projection.

Acknowledgement. It is my pleasure to thank the referee who did a careful reading
of the manuscript, raising many sensible remarks.
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Note added in proof

Part of this paper was presented at the Sz.-Nagy Centennial Conference held in
Szeged, Hungary (June 2013). Vladimir Miiller gave a negative answer to Ques-
tion 1: the bilateral weighted shift T = shift{w;} on ¢* with w, = % for
k<0 and wy, = m% for k>0 is a BQT contraction for which A # A2.
Indeed, this is an injective (wy > 0) proper Cjg-contraction (wy < 1) such that
limg_, oo wg = limg_y oo wi = 1, and so op(T) = op(T*) = @ (|48, Proposition 15,
p. 72, and Theorem 9, p. 71]), which implies that it is BOQT . Since T is a proper Cyo-
contraction, A is completely nonprojective (0 < ||Az| = |[A2TAzz| < ||Azz| for
x # 0). Gyorgy Gehér gave a negative answer to Question 5 by pointing out that a
perturbation of a bilateral (unweighted) shift U by a compact bilateral weighted shift
K, say, T = U— K for K = shift{w;} on ¢? with lim |00 wi = 0 lies in N 4 K.
Selecting the nonnegative weights wy, such that 7" is a contraction (0 < 1 —wy; < 1)
and A # A%, a negative answer to Question 5 (and so to Questions 4 and 1) is
supplied.
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