

A note on a question by T. Ando

E. ANDRUCHOW

Communicated by L. Kérchy

Abstract. In 1979, T. Ando posed the following question: suppose E and F are two projection-valued measures defined on an algebra Σ of subsets of Ω , which satisfy

$$\|E(\Delta) - F(\Delta)\| \leq 1 - \delta, \quad \Delta \in \Sigma,$$

for some $\delta > 0$. Does there exist a unitary operator u such that $u^*E(\Delta)u = F(\Delta)$ for all $\Delta \in \Sigma$? He knew that the answer was affirmative if both measures were strongly σ -additive and maximal (i.e. E and F have cyclic vectors). In this note, we show that the answer is also affirmative if both measures take values in a common finite von Neumann algebra.

1 Introduction

In 1979, at the Proceedings of the Fourth Conference on Operator Theory in Timisoara [1], Prof. T. Ando posed the following question:

Suppose that E and F are two projection-valued spectral measures in $\mathcal{B}(\mathcal{H})$, defined on a common σ -algebra Σ of subsets of Ω , such that there exists $\delta > 0$ such that

$$\|E(\Delta) - F(\Delta)\| \leq 1 - \delta,$$

for all $\Delta \in \Sigma$.

Question: does there exist a unitary operator u in $\mathcal{B}(\mathcal{H})$ such that

$$F(\Delta) = u^*E(\Delta)u,$$

for all $\Delta \in \Sigma$?

Received October 10, 2012.

AMS Subject Classifications: 47B15, 47C15.

Key words and phrases: spectral measure, unitary equivalence, finite algebra.

The purpose of this note is to renew the attention to this question, which as far as we know, remains unanswered. In [1], Prof. T. Ando knew that the answer is positive if both measures are strongly σ -additive and *maximal*. A spectral measure E is maximal if any projection $p \in \mathcal{B}(\mathcal{H})$ which satisfies that $pE(\Delta) = E(\Delta)p$ for all $\Delta \in \Sigma$, is a spectral projection: $p = E(\Delta_p)$ for some $\Delta_p \in \Sigma$. Back in 1975 he also knew that the answer is positive if $\delta \geq \frac{1}{\sqrt{2}}$ [2]. In [3] it was shown a weaker result, namely that the assertion is true for $\delta = \frac{1}{2}$.

In this note we give an affirmative answer for this question, in an elementary fashion, in other particular cases. For instance, when both measures E and F take values in a common finite von Neumann algebra.

Let \mathcal{M} denote a von Neumann algebra with a finite normal and faithful tracial state τ . Let $\mathcal{H} = L^2(\mathcal{M}, \tau)$. We shall consider that $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$, and will denote by $\| \cdot \|_2$ the norm of \mathcal{H} . Note that any $a \in \mathcal{M}$ can be regarded as a vector in \mathcal{H} , and in that case $\|a\|_2 = \tau(a^*a)^{1/2}$. A spectral measure E in Ω is a map

$$E : \Sigma \rightarrow \mathcal{B}(\mathcal{H}),$$

such that $E(\Delta)$ is an orthogonal projection in \mathcal{H} , $E(\emptyset) = 0$, $E(\Omega) = 1$,

$$E(\Delta \cap \Delta') = E(\Delta)E(\Delta') = E(\Delta')E(\Delta),$$

and E is additive: if $\Delta, \Delta' \in \Sigma$ are disjoint, then

$$E(\Delta \cup \Delta') = E(\Delta) + E(\Delta').$$

We say that E is strongly σ -additive, if for any countable family Δ_k , $k \geq 1$, of disjoint elements in Σ , and for each $\xi \in \mathcal{H}$,

$$E(\bigcup_{k \geq 1} \Delta_k)\xi = \sum_{k \geq 1} E(\Delta_k)\xi.$$

Finally, we say that E is \mathcal{M} -valued if $E(\Delta) \in \mathcal{M}$ for all $\Delta \in \Sigma$.

2 \mathcal{M} -valued measures

Let π be a (finite) partition of Ω , i.e. $\pi = \{\Delta_1, \dots, \Delta_n\}$, where $\Delta_i \in \Sigma$, $\Delta_i \cap \Delta_j = \emptyset$ if $i \neq j$, and $\bigcup_{i=1}^n \Delta_i = \Omega$. Let E, F be two spectral measures, and denote by $g_\pi^{E, F}$, or shortly $g_\pi \in \mathcal{B}(\mathcal{H})$ the element

$$g_\pi = \sum_{i=1}^n E(\Delta_i)F(\Delta_i).$$

The following result is well known. We include the proof, which is elementary.

Lemma 2.1. *If $\|E(\Delta) - F(\Delta)\| < 1$ for all $\Delta \in \Sigma$, then g_π is invertible.*

Proof. Note that

$$g_\pi g_\pi^* = \sum_{i=1}^n E(\Delta_i)F(\Delta_i) \sum_{j=1}^n F(\Delta_j)E(\Delta_j) = \sum_{i=1}^n E(\Delta_i)F(\Delta_i)E(\Delta_i).$$

Each operator $E(\Delta_i)F(\Delta_i)E(\Delta_i)$ can be regarded as an operator in $R(E(\Delta_i))$, the range of $E(\Delta_i)$. Note that it is an invertible operator there:

$$\begin{aligned} \|E(\Delta_i)F(\Delta_i)E(\Delta_i) - E(\Delta_i)\| &= \|E(\Delta_i)(F(\Delta_i) - E(\Delta_i))E(\Delta_i)\| \\ &\leq \|F(\Delta_i) - E(\Delta_i)\| < 1. \end{aligned}$$

Since $E(\Delta_i)$ is the identity operator in $R(E(\Delta_i))$, our claim follows. Note that the spaces $R(E(\Delta_i))$ are mutually orthogonal, and their sum is \mathcal{H} . It follows that $g_\pi g_\pi^*$ is invertible. Analogously $g_\pi^* g_\pi$ is also invertible. It follows that g_π is invertible. ■

Given E and F , we can regard g_π as a net of elements in $\mathcal{B}(\mathcal{H})$, indexed in the set Π of finite partitions of Ω . A natural partial order in Π is given by $\pi' \geq \pi$ if every subset Δ' in π' is contained in a subset Δ in π .

Remark 2.2. If there exists $\delta > 0$ such that $\|E(\Delta) - F(\Delta)\| \leq 1 - \delta$ for all $\Delta \in \Sigma$, then, with the same computation as in the above lemma,

$$\|g_\pi g_\pi^* - 1\| \leq 1 - \delta, \quad \|g_\pi^* g_\pi - 1\| \leq 1 - \delta.$$

Indeed,

$$g_\pi g_\pi^* - 1 = \sum_{i=1}^n E(\Delta_i)[F(\Delta_i) - E(\Delta_i)]E(\Delta_i),$$

so that

$$\|g_\pi g_\pi^* - 1\| = \max_{1 \leq i \leq n} \|F(\Delta_i) - E(\Delta_i)\| \leq 1 - \delta,$$

and similarly for $g_\pi^* g_\pi$.

It is apparent that

$$\begin{aligned} \|g_\pi\| &= \|g_\pi^* g_\pi\|^{1/2} = \left\| \sum_{i=1}^n F(\Delta_i)E(\Delta_i)F(\Delta_i) \right\|^{1/2} \\ &= \max_{1 \leq i \leq n} \|F(\Delta_i)E(\Delta_i)F(\Delta_i)\|^{1/2} \leq 1. \end{aligned}$$

Therefore,

Lemma 2.3. *There exists a directed set Π_0 of partitions of Ω such that the subnets $\{g_\pi\}_{\pi \in \Pi_0}$, $\{g_\pi g_\pi^*\}_{\pi \in \Pi_0}$ and $\{g_\pi^* g_\pi\}_{\pi \in \Pi_0}$ converge, respectively, to elements a , b and c in $\mathcal{B}(\mathcal{H})$, in the weak operator topology. If E and F are \mathcal{M} -valued, then $a, b, c \in \mathcal{M}$. Moreover, $\|a\|, \|b\|, \|c\| \leq 1$. If additionally there exists $0 < \delta < 1$ such that*

$$\|E(\Delta) - F(\Delta)\| \leq 1 - \delta$$

for all $\Delta \in \Sigma$, then b and c are positive and invertible

Proof. Since the unit ball of $\mathcal{B}(\mathcal{H})$ is compact in the weak operator topology, there exists a convergent subnet of g_π . There exists a subnet of this subnet such that $g_\pi^* g_\pi$ converges, etc. Clearly, the limits a , b and c belong to the unit ball of \mathcal{M} . If there exists δ with the above mentioned property, by the remark above, the net $g_\pi g_\pi^* - 1$ converges to the element $b - 1$, which belongs to the ball of radius $1 - \delta$, and therefore b is invertible. Similarly for c . \blacksquare

Remark 2.4. Suppose that E and F are \mathcal{M} -valued. Note that

$$\tau(g_\pi g_\pi^*) = \tau(g_\pi^* g_\pi) = \sum_{i=1}^n \tau(E(\Delta_i)F(\Delta_i)E(\Delta_i)) = \sum_{i=1}^n \tau(E(\Delta_i)F(\Delta_i)) = \tau(g_\pi).$$

Moreover, if the net $\{g_\pi\}$ is convergent in the weak operator topology, then the net $\{\tau(g_\pi)\}$ is convergent. Indeed, if we denote by 1 the unit element of \mathcal{M} regarded as a vector in \mathcal{H} :

$$\tau(g_\pi) = \langle g_\pi 1, 1 \rangle \rightarrow \langle a 1, 1 \rangle = \tau(a),$$

and similarly for $g_\pi^* g_\pi$ and $g_\pi g_\pi^*$. Therefore, for any limit elements a, b, c obtained as above, one has $\tau(a) = \tau(b) = \tau(c) > 0$.

In what follows, we fix the directed set Π_0 , such that all three subnets $\{g_\pi\}_{\pi \in \Pi_0}$, $\{g_\pi g_\pi^*\}_{\pi \in \Pi_0}$ and $\{g_\pi^* g_\pi\}_{\pi \in \Pi_0}$ converge to a , b and c , in the weak operator topology.

Lemma 2.5. *If E and F are \mathcal{M} -valued, then $\|g_\pi - a\|_2 \rightarrow 0$.*

Proof. Suppose that $\pi = \{\Delta_i\}$ and $\pi' = \{\Delta'_j\}$ are two partitions in Π_0 such that $\pi' \geq \pi$. Then

$$\begin{aligned} \tau(g_\pi^* g_{\pi'}) &= \sum_{i,j} \tau(F(\Delta_i)E(\Delta_i)E(\Delta'_j)F(\Delta'_j)) \\ &= \sum_i \left(\sum_{j: \Delta'_j \subset \Delta_i} \tau(F(\Delta'_j)E(\Delta'_j)) \right) = \tau(g_{\pi'}^*) = \tau(g_{\pi'}). \end{aligned}$$

Given $\epsilon > 0$, let π_ϵ be a partition in Π_0 such that for all $\pi \geq \pi_\epsilon$, $|\tau(g_\pi) - \tau(g_{\pi_\epsilon})| < \epsilon$. Then, if π, π' are two partitions finer than π_ϵ ,

$$\|g_\pi - g_{\pi'}\|_2 \leq \|g_\pi - g_{\pi_\epsilon}\|_2 + \|g_{\pi_\epsilon} - g_{\pi'}\|_2,$$

and, by the above computation

$$\|g_\pi - g_{\pi_\epsilon}\|_2^2 = \tau(g_\pi^* g_\pi) + \tau(g_{\pi_\epsilon}^* g_{\pi_\epsilon}) - \tau(g_\pi^* g_{\pi_\epsilon}) - \tau(g_{\pi_\epsilon}^* g_\pi) = \tau(g_\pi) - \tau(g_{\pi_\epsilon}) < \epsilon.$$

Analogously for the other term. Then for $\pi, \pi' \geq \pi_\epsilon$,

$$\|g_\pi - g_{\pi'}\|_2 \leq 2\sqrt{\epsilon}.$$

Thus $\{g_\pi\}$ is a Cauchy net in \mathcal{H} , and converges to an element in \mathcal{H} . On the other hand, this net converges in the weak operator topology to a . \blacksquare

Note that also $\|g_\pi^* - a^*\|_2 \rightarrow 0$.

Corollary 2.6. *With the current assumptions and notations, $aa^* = b$ and $a^*a = c$. In particular, $a \in \mathcal{M}$ is invertible.*

Proof. Note that

$$\begin{aligned} \|g_\pi g_\pi^* - aa^*\|_2 &\leq \|g_\pi g_\pi^* - g_\pi a^*\|_2 + \|g_\pi a^* - aa^*\|_2 \\ &\leq \|g_\pi\| \|g_\pi^* - a^*\|_2 + \|g_\pi - a\|_2 \|a^*\| \leq \|g_\pi^* - a^*\|_2 + \|g_\pi - a\|_2. \end{aligned}$$

Thus $aa^* = b$. Analogously $a^*a = c$. \blacksquare

Theorem 2.7. *Let E and F be two operator-valued spectral measures, with values in a finite von Neumann algebra \mathcal{M} . Suppose that there exists $\delta > 0$ satisfying*

$$\|E(\Delta) - F(\Delta)\| \leq 1 - \delta,$$

for all $\Delta \in \Sigma$. Then there exists a unitary element $u \in \mathcal{M}$ such that

$$F(\Delta) = u^* E(\Delta) u,$$

for all $\Delta \in \Sigma$.

Proof. Pick $\Delta \in \Sigma$. Consider the partition $P = \{\Delta, \Omega \setminus \Delta\}$. There exists a partition $\pi_0 \in \Pi_0$ such that $\pi_0 \geq P$. Then

$$g_{\pi_0} F(\Delta) = \sum_i E(\Delta_i) F(\Delta_i) F(\Delta) = \sum_{\Delta_i \subset \Delta} E(\Delta_i) F(\Delta_i).$$

Analogously,

$$E(\Delta)g_{\pi_0} = \sum_{\Delta_i \subset \Delta} E(\Delta_i)F(\Delta_i).$$

Thus $g_{\pi_0}F(\Delta) = E(\Delta)g_{\pi_0}$. Apparently this also holds for any $\pi \in \Pi_0$ such that $\pi \geq \pi_0$. Taking limits, $aF(\Delta) = E(\Delta)a$. Thus $a^*E(\Delta) = F(\Delta)a^*$, and therefore a^*a commutes with $F(\Delta)$. Note that by the previous result, a is invertible. Let u be the unitary part in the polar decomposition of a : $a = u|a|$. Note that $|a| = (a^*a)^{1/2}$ commutes with $F(\Delta)$ for all $\Delta \in \Sigma$. Then $u = a|a|^{-1} \in \mathcal{M}$ satisfies

$$uF(\Delta) = a|a|^{-1}F(\Delta) = aF(\Delta)|a|^{-1} = E(\Delta)a|a|^{-1} = E(\Delta)u. \quad \blacksquare$$

3 Non-finite case

The above ideas can be used to prove a partial result in the general $\mathcal{B}(\mathcal{H})$ -valued case. With the current notations and assumptions (namely: $\|E(\Delta) - F(\Delta)\| < 1 - \delta$ for some $\delta > 0$ and every $\Delta \in \Sigma$, and the directed set of partitions Π_0 is fixed such that for $\pi \in \Pi_0$, g_π , $g_\pi^*g_\pi$ and $g_\pi g_\pi^*$ converge to a , b and c in the weak operator topology). As in the proof of the above theorem, it suffices to show that a is invertible. Let us still denote by $\|\cdot\|_2$ the norm of \mathcal{H} . Note that for any vector $\xi \in \mathcal{H}$,

$$0 \leq \|g_\pi \xi - a\xi\|_2^2 = \langle g_\pi^* g_\pi \xi, \xi \rangle + \langle a\xi, a\xi \rangle - \langle g_\pi \xi, a\xi \rangle - \langle a\xi, g_\pi \xi \rangle$$

converges to $\langle b\xi, \xi \rangle - \langle a^*a\xi, \xi \rangle$. It follows that $a^*a \leq b$. Analogously, $aa^* \leq c$. The following result can be regarded as a generalization of the theorem in the previous section.

Lemma 3.1. *Suppose that there exists a trace class positive operator h , with zero kernel, which commutes with E (i.e. $hE(\Delta) = E(\Delta)h$ for all $\Delta \in \Sigma$). Then $aa^* = c$, and thus there exists a co-isometry v such that $v^*E(\Delta)v = F(\Delta)$.*

Proof. Denote by Tr the usual trace of $\mathcal{B}(\mathcal{H})$. We may normalize h so that $\text{Tr}(h) = 1$. Let $\varphi = \text{Tr}(h \cdot)$. Note that φ is a faithful normal state in $\mathcal{B}(\mathcal{H})$, and that the spectral measure E lies in the centralizer of φ ,

$$\varphi(xE(\Delta)) = \text{Tr}(hx E(\Delta)) = \text{Tr}(E(\Delta)hx) = \text{Tr}(hE(\Delta)x) = \varphi(E(\Delta)x),$$

for all $x \in \mathcal{B}(\mathcal{H})$. Then an argument similar to the one in Lemma 2.5 can be carried

out. Namely, if π' is finer than π ,

$$\begin{aligned}\varphi(g_\pi g_{\pi'}^*) &= \sum_{i,j} \varphi(E(\Delta_i)F(\Delta_i)F(\Delta'_j)E(\Delta'_j)) \\ &= \sum_i \left(\sum_{\Delta'_j \subset \Delta_i} \varphi(E(\Delta_i)F(\Delta_i)F(\Delta'_j)E(\Delta'_j)) \right) \\ &= \sum_i \left(\sum_{\Delta'_j \subset \Delta_i} \varphi(E(\Delta'_j)F(\Delta'_j)) \right) = \varphi(g_{\pi'}).\end{aligned}$$

It follows that g_π is a Cauchy net for the norm $|x|_\varphi = \varphi(xx^*)^{1/2}$. Then $\varphi((g_\pi - a)(g_\pi - a)^*) \rightarrow 0$. On the other hand

$$\varphi((g_\pi - a)(g_\pi - a)^*) = \varphi(g_\pi g_\pi^*) + \varphi(aa^*) - \varphi(g_\pi a^*) - \varphi(a g_\pi^*).$$

Since φ is normal and the nets are uniformly bounded by 1, this expression tends to

$$\varphi(c) - \varphi(aa^*).$$

It follows that $\varphi(c) = \varphi(aa^*)$. By the above remark $aa^* \leq c$. Since φ is faithful, this implies that $aa^* = c$.

In particular, a is surjective. Let $c = (aa^*)^{1/2}v$ be the reversed polar decomposition of c . Then v is a co-isometry, and clearly, as above $v^*Ev = F$. ■

Corollary 3.2. *Suppose that there exist positive trace class operators h_E and h_F with zero kernel, which commute, respectively with E and F . Then there exists a unitary operator u such that $u^*Eu = F$.*

Proof. By the above proposition, $aa^* = c$. Reasoning analogously with the state $\psi = \text{Tr}(h_F \cdot)$, it follows also that $a^*a = b$. Since b and c are invertible, then a is invertible. ■

The existence of a positive trace class operator h with zero kernel which commutes with E is equivalent to the existence of a mutually orthogonal family $\{p_j\}_{j \geq 1}$ such that $\dim R(p_j) < \infty$, $\sum_{j \geq 1} p_j = 1$, and p_j commute with $E(\Delta)$, for all $\Delta \in \Sigma$. Indeed, the projections onto the eigenspaces of h provide such a family. Conversely, given a family of projections as above, take for instance $h = \sum_{j \geq 1} \frac{1}{2^j} p_j$.

References

[1] T. ANDO, Open Problems, *Proceedings of the Fourth Conference on Operator Theory, Timisoara, June 1979*, INCREST, 1980.

- [2] T. ANDO, *private communication.*
- [3] F. KUBO and K. MATSUMOTO, Equivalences of operator representations of semi-groups. III, *Math. Japon.*, **21** (1976), 377–380.

E. ANDRUCHOW, Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J.M. Gutierrez 1150, (1613) Los Polvorines, Argentina; and Instituto Argentino de Matemática, Saavedra 15, 3er. piso, (1083) Buenos Aires, Argentina; *e-mail:* eandruch@ungs.edu.ar